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Nomenclature

c Airfoil chord length
CD Drag coefficient (D/qc)

CL Lift coefficient (L/qc)

CP Static pressure coefficient ( p -

q
C , Steady momentum coefficient (J/qc)

(CM.) Oscillatory momentum coefficient ( (J)/qc)

D Drag
dC,, Pressure recovery coefficient

d(x/c)

Filter cutoff frequency

fe Excitation frequency

f,, Modulation frequency

fsep Shedding frequency of separated flow (U_/XE)

f.ke Wake shedding frequency (U-/Wak,)

F+ Reduced excitation frequency (JXTE/U)

h Slot width
J Steady jet momentum (pU'h)

(J) Oscillatory jet momentum (pu'h)

L Lift
p Static local pressure

p- Free stream pressure

q Free stream dynamic pressure (pU'/2)

ui Oscillatory jet velocity

U1  Mean jet velocity

U- Free stream velocity

XSEP Distance from separation points to trailing edge

XTE Distance from excitation slot to trailing edge

p Air density
0 Boundary layer momentum thickness

o'07 Variance of signal

07, Variance of noise
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Abbreviations

AM Amplitude Modulation
AOA Angle Of Attack
BM Burst Modulation
DAQ Data AcQuisition
DSP Digital Signal Processing
ID IDentification
LDV Laser Doppler Velocimetry
MSE Mean Square Error
PIV Particle Image Velocimetry
PM Pulse Modulation
PSD Power Spectral Density
SJA Synthetic Jet Actuator
SNR (dB) Signal to Noise Ratio
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Abstract

Flow separation has severe adverse effects on performance of flow-related devices (e.g.,
lift loss of aircrafts). Active control of separated flow has received extensive attention as it is
able to mitigate or eliminate flow separation effectively. Most research has been open-loop in
nature (i.e., manually adjusting control inputs to achieve best results). Closed-loop control of
separated flow has many potential advantages over open-loop control, namely optimization in
multi-dimensional domain with constraints, adaptability to changing flow conditions, etc. In this
research, adaptive closed-loop control is used to reattach the separated flow over a NACA 0025
airfoil using multiple zero-net-mass-flux (ZNMF) actuators that cover the central 33% of the
airfoil span. In particular, two distinct approaches are used. Adaptive disturbance rejection
algorithms are used to apply dynamic feedback control of separated flow. The closed-loop
control results show - 7 x improvements in the lift/drag ratio, with a corresponding increase in
lift and reduced drag and concomitant reductions in the fluctuating surface pressure spectra. On
the other hand, a simplex optimization approach uses the lift and drag measured by a strain-
gauge balance for feedback and searches for the optimal actuation parameters in a closed-loop
fashion. The constrained optimization results seeking to maximize lift-to-drag ratio are
promising and reveal the importance of forcing nonlinear interactions between the shear layer
and wake instabilities.
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I Introduction

The primary goal of this research is to implement a closed-loop control system to control
separated flow and to evaluate the performance of the controller. A control system that includes
an array of actuators, sensors (pressure sensors or lift/drag balance) and a digital controller is
proposed to control flow separation in a closed-loop fashion.

This first chapter introduces the flow physics and active control approaches of flow
separation. It is organized as follows. First, a brief overview of separation control is provided to
orient the reader, followed by the motivation. Then a technical background section is presented
to review previous work reported in the literature. Finally, the objectives and technical
approaches of this research are presented.
1.1 Overview

Flow separation is identified as one of the most important flow phenomena due to its
severe adverse effects on flow-related devices. Following the introduction of the concept of the
boundary layer by Prandtl (1904), flow separation has received considerable attention in the fluid
dynamics community.

Flow separation is the breakaway or detachment of fluid from a solid surface (Greenblatt
and Wygnanski 2000). Flow separation incurs a large amount of energy/lift loss and limits the
performance of many flow-related devices (e.g., airplanes, diffusers, etc.). Researchers have
been trying to eliminate or at least mitigate flow separation for over a century because of its large
potential payoff in many applications.

As shown in Figure 1-4, control of separated flow is divided into two main categories:
active control and passive control. Active control provides external energy into the flow while
passive control does not. Some passive separation control methods, such as geometrical shaping
and turbulators (i.e., turbulence generators), are commonly used because of their simplicity and
feasibility. On the other hand, tremendous progress has been made in active separation control
over the past twenty years. Traditional active separation control methods, such as steady
blowing and suction, were initially used to control flow separation (Gad-el-Hak 2000). These
methods were able to control of separation to some extent. However, they were far from
optimal because the overall energy required input required to gain a meaningful lift increase or
drag reduction was comparable to the energy saved via control of separation (Greenblatt and
Wygnanski 2000).

Schubauer and Skramstad (1948) first introduced a breakthrough in active flow control:
periodic excitation. This technique requires much less energy than traditional steady active
methods and accelerates and regulates the generation of large coherent structures that are
primarily responsible for the transport of momentum across the flow (Greenblatt and Wygnanski
2000). The increased large coherent structures make the flow more resistant to separation.
Periodic excitation has subsequently been shown to be superior to steady boundary layer control
methods by many researchers (Seifert 1996; Greenblatt and Wygnanski 2000; Nishri and
Wygnanski 1998). Because of these reasons, periodic excitation is now widely used to control
flow separation. Optimal excitation locations, waveforms shapes, and frequencies of periodic
perturbations have been systematically studied by numerous researchers (Seifert and Pack
2003A, Amitay et al. 2001). Yet none of these studies has used feedback control to "optimize"
the excitation waveform.

7



One of the most important aspects of separation control is the actuation mechanism that
introduces periodic perturbations into the flow structure. Internal acoustic excitation (Hsiao et
al. 1990; Huang et al. 1987), speakers (Narayanan and Banaszuk 2003), oscillatory blowing
valves (Allen et al. 2000), and MEMS-based actuators (Rathnasingham and Breuer 2003), etc.
have been investigated. Among these, synthetic jet or zero-net mass flux (ZNMF) actuators have
been the focus of significant research for the past decade due to their utility in flow control
applications (Glezer and Amitay 2002). ZNMF actuators utilize the working fluid and do not
require an external fluid source, which makes them very attractive from a systems
implementation perspective. Significant progress has been made in the modeling and design of
such devices (Gallas et al. 2003, 2005). More details of the synthetic jet actuators used in this
research are described in Chapter 4. The driving frequency, location, and momentum coefficient
of the actuation are the primary parameters that characterize their performance (Amitay et al.
2001).

Although separation control has received extensive attention, to date most studies have
focused on open-loop separation control. In the author's opinion, this open-loop approach is due
to a fluid mechanics bias to avoid using a more complex closed-loop control approach. Closed-
loop separation control has the potential to save more energy than open-loop methods (Cattafesta
et al. 1997) and make separation control systems adaptable to different flow conditions. Few
experimental studies have focused on closed-loop separation control. For example, Allan et al.
(2000) attempted to tune a PID controller for closed-loop separation control and showed that the
integral gain was the most effective as a result of the large time constant of their low bandwidth
actuator system. However, the realized model and controller were simple. Their results merely
scratched the surface of what can possibly be accomplished. Therefore, it is believed that control
of flow separation using an array of high bandwidth actuators and surface sensors (pressure or
shear stress) is an excellent candidate for closed-loop separation control. Hence, implementation
of feedback controllers including more advanced modeling and control algorithms to flow
separation control is proposed and is the focus of this research.
1.2 Motivation

Numerous applications of separation control, each with significant potential payoffs, have
been identified (Greenblatt and Wygnanski 2000). Many separation control strategies have been
applied on civil and military aircrafts and underwater vehicles. However, most of the
applications are open-loop in nature because of their simplicity. Although some closed-loop
separation control research has been done (Allan et al. 2000; Banaszuk et al. 2003, etc), they are
not sufficiently developed to be implemented on real vehicles. The goal of this research is to
design and implement various closed-loop control systems for control of separated flows and to
seek physical insights behind the control schemes. The main advantages of closed-loop
separation control potentially include better performance, energy efficiency and adaptability to
changing of flow conditions.
1.3 Background

1.3.1 Two-Dimensional Separation Flow Physics
Under the circumstances of an adverse pressure gradient (dp/dx >0), fluid particles are

retarded by both the increasing pressure as well as wall skin friction. If the adverse pressure
gradient is of sufficient strength, fluid particles near the wall are likely to separate from the wall
and move upstream. This is due to the fact that these particles have finite kinetic energy and
cannot penetrate far into the adverse pressure gradient region. The flow separates from the
boundary layer and forms large scale vortical structures in the separated region (Figure 1-1).
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Assuming two-dimensional, incompressible, steady flow with negligible gravity, the
streamwise (" x ") component of the momentum equation at the wall reduces to

Ua Va=_1 dp V(a2/ 2

axEy p dx A

or

a 2u I dpV _ _- (2)
J 2  p dX

where v= lt/p is the kinematic viscosity, y is the wall normal coordinate, x is the streamwise

coordinate with a corresponding u velocity and streamwise pressure gradient dp/dx.
From eqn. (2), we can see that only an adverse pressure gradient (dp/dx > 0) can cause a

point of inflection in the velocity profile and the curvature changing sign to make the profile S-
shape. In this case, separation will occur when the adverse pressure gradient is strong enough to
make the right hand side of eqn. (2) positive (shown in Figure 1-1).

1.3.2 Effects of Flow Separation
In the separation region, the normal velocity component significantly increases as well as

the thickness of boundary layer. Therefore, the boundary layer approximations are no longer
valid and the problem can no longer be solved using boundary layer theory.

Flow separation significantly changes the pressure distribution around the surface. Such
deviations are usually detrimental. As an example, Figure 1-3 shows the CL and CD of a

NACA0025 airfoil versus angle of attack measured by a lift/drag balance at Re 100,000.
When the angle of attack increases from zero degree, both CL and C0 increase as expected.

However, CL drops dramatically due to flow separation at about 13 degrees of angle of attack.

At the same time, CD continues to increase beyond the inception of stall. Both of these effects

generally have a negative impact on the airplane performance. However, some applications
utilize flow separation. For example, the use of spoilers on airplanes during landing reduces the
lift and increases drag to allow the brakes to work more efficiently.

More commonly, we want to mitigate or eliminate flow separation. Typical applications
of flow separation control include: separation control of various airfoils to increase CLm for
larger payload (Greenblatt and Wygnanski 2000; Seifert and Pack 2002; etc); to reduce engine
power and noise at takeoff (Gad-el-Hak 2000); to increase efficiency of diffusers (i.e. pressure
recovery) (Banaszuk et al. 2003); etc.

1.3.3 Control of Flow Separation
Because of the effects mentioned above and the large potential payoff, researchers have

been preoccupied with delaying flow separation or eliminating it entirely. As suggested by
Cattafesta et al. (2003), the classification of flow control is chosen as shown in Figure 1-4 to be
consistent with terminology used in active noise and vibration control. Active control is
subdivided into open-loop versus closed-loop control. Closed-loop control can be further
classified into quasi-static versus dynamic, the distinction between the two being whether or not
the feedback control is performed on a time scale with the dynamical scales of the flow. Since
fluid flows are inherently nonlinear (Wu et al. 1998), the standard frequency preservation of a
linear system does not hold. Consequently, nonlinear feedback control on a very slow time
compared to the characteristic times scales of the flow is, in fact, possible and attractive. In
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essence, this so-called quasi-static control becomes a nonlinear optimization problem. This
research will investigate both classes of closed-loop control shown in Figure 1-4.

Other fluid dynamic issues have been studied extensively, such as the effects of Reynolds
number, frequency, actuator and sensor locations, momentum coefficient, surface curvature, and
compressibility, etc.. Although the topic of this research is closed-loop separation control, the
results and conclusions from the open-loop control studies should serve as a sound physical basis
for effective control and are reviewed below.

1.3.3.1 Open-loop separation control.
Periodic excitation has been shown to be much more effective than steady forcing

because it enhances the momentum transport across the flow domain at a substantial reduction in
energy expenditure. It accelerates and regulates the generation of large coherent structures that
are primarily responsible for the momentum transport across the flow (Greenblatt and
Wygnanski 2000). The enhanced momentum transport forces the separated flow to reattach to
the surface and form a thick turbulent boundary layer in a time-averaged sense. The
reattachment of the boundary layer regains the pressure suction zone on the upper surface of the
airfoil and thus enhances the lift performance. Furthermore, the superposition of weak suction
on the periodic excitation enhances the receptivity of the separated shear layer to the
fundamental excitation frequency and thus the effectiveness of periodic excitation (Seifert and
Pack 2002).

Given the improved performance of periodic excitation to control flow separation,
researchers have sought to optimize separation control via time-consuming parametric variations.
Significant parameters or conditions that affect the performance of separation control have been
identified. Although they are discussed separately below, one should keep in mind that these
factors are all coupled with each other.

Actuation frequency. First, consider the characteristic flow structures associated with
separated flow. Based on previous studies, Mittal et al. (2005) summarize the three situations
with regards to separated flow, as shown in Figure 1-5. In post-stall flow (case C in Figure 1-5),
leading-edge shear layer rollup and vortex shedding in the wake are two characteristic features
(Wu et al. 1998). Huerre and Monkewitz (1990) suggest that this type of shear flow (with a
pocket of absolute instability of sufficient size) may display intrinsic dynamics of the same
nature as in a closed-flow system, in which disturbances can grow upstream (i.e. global
instability). Therefore, it is reasonable to postulate that separated flow over an airfoil acts as a
nonlinear multi-frequency closed-flow system. In such a system, the shear layer instability (with
characteristic frequency fSL) and the global wake instability (with vortex shedding frequency

fwake ) may interact with each other in a nonlinear fashion. In case B, a closed separation bubble
is present at some distance downstream of the leading edge. In this case there are potentially
three characteristic flow frequencies in the separated flow: fSLI fwae and f,,P, where the new

scale, f,,p, corresponds to the characteristic frequency of the separation bubble.

The scales of the three frequencies are fsL - U/OSL fSL - U/L eP and fwak, - U/Wwake

where OsL is the shear layer thickness, L,ep is the length of the separation bubble and W,,, is
the width of wake. Prasad and Williamson (1996) also show that fsL=ARef.a,, where
A = 0.0235 and B = 0.67. Since there are different relevant length scales that are included in
the three characteristic frequencies, one should expect a significant variation in the observed
frequency scales and the corresponding optimal frequency.
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The present study is focused on how flow systems respond to modulated (e.g. AM, BM,
PM) unsteady excitations by ZNMF devices targeting the inherent flow instabilities that lead to
the presence of these characteristic flow frequencies. The goal is to search for optimal forcing
schemes that most effectively mitigate flow separation via nonlinear interaction of the
instabilities.

Much research has been conducted to determine what excitation frequencies are most
effective for separation control. However, except for the general agreement that periodic
excitation is far more effective than steady blowing, the range of optimal actuation frequencies is
a current subject of intense debate. A dimensionless actuation frequency is typically defined for
this purpose. However, three slightly different definitions have been given for a so-called
dimensionless frequency P: 1) F"=feXTE/U- , where f. is the excitation frequency, XTE is

the distance from the excitation slot to the trailing edge and U_ is the free stream velocity; 2)

F'=feL,,p/U- , where Lsp is the distance from separation to reattachment; and 3) F =fec/U-,

where c is the chord length. These three are nearly identical for post-stall flow (where the
separation bubble length is approximately the airfoil chord), but they scale very differently if a
closed separation bubble of finite extent is present. One should notice that none of these
definitions is related to the shear layer frequency (fSL). Most researchers implicitly ignore this

important frequency when studying separation control.
Herein, some results regarding actuation frequency in previous studies are summarized.

Among studies that define F+=feXTE/U-,I Wygnanski and his colleagues conclude that the

optimal excitation frequency is of order unity F=O(l) (Seifert et al. 1996, Nishri and
Wygnanski 1998, Greenblatt and Wygnanski 2000) and have found that so-called high frequency
fording F=O(10) is ineffective for their airfoil (NACA 0015) and flow conditions. Conversely,

using the same definition of F, Amitay et al. (2001) found that when the excitation frequency
F+ > 0(10), the lift-to-pressure drag ratio was larger than that when the excitation frequency

FP < 4. Honohan et al (2000) also suggested that higher reduced frequencies (F' > 10) can be
effective. They argued that it is because the high frequency excitation produces a virtual
aerodynamic surface modification that thins the turbulent boundary layer and results in a local
favorable pressure gradient.

Besides this argument, there may be two other possible reasons accounting for this
interesting discrepancy. First, the length-scale X, may not be appropriate for their airfoil

because of the formation of a closed separation bubble. Instead, if L,, p were used, this

discrepancy might not exist. Second, as mentioned earlier, the shear layer frequency fSL may

also be important (Mittal et al 2005). Here, fSL C< U/0, where 0 is the boundary layer

momentum thickness and not XTE or L,. The different frequency scales are indicative of

different flow instabilities that may exist in the flow and, if present, may compete with each
other (Wu et al 1998). When periodic excitation is introduced, one or more of these instabilities
may be energized. The controlled flow may then be regulated, and thus lift performance may be
enhanced. This may explain the observed variations of the optimal excitation frequency.

Along these lines, an innovative forcing approach that uses multiple harmonically related
frequencies is presented by Narayanan and Banaszuk (2003). They demonstrated improvements
of this new approach versus single frequency sinusoidal forcing in control of separation in a
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diffuser, although its effectiveness requires further investigation. To extend this idea further, one
can use excitations with multiple frequency components corresponding to the characteristic
frequencies mentioned above. This idea will be investigated in this research.

Excitation amplitude. Another key control parameter in a ZMNF device is jet velocity
V, (some characteristic velocity measure, e.g. the peak or an average velocity). In the literature,

the jet frequency is usually non-dimensionalized as r=tL-P/U , where L,ep is, for example, the

length of separation region and U_ is the free stream velocity. The jet velocity is usually non-

dimensionalized by U_. Various researchers have shown that control authority varies

monotonically with Vj/U-, for a sinusoidal excitation up to some maximum value (Seifert et al.

1993, 1996, 1999; Glezer and Amitay 2002; Mittal and Rampunggoon 2002). In practice,
especially in high speed flows, control authority is often lacking. From an efficiency standpoint,
it is desirable to control a flow with minimal actuator input.

Modulation signals. Piezoelectric actuators have fast dynamic response and low power
consumption. However, the use of piezoelectric actuators has been limited because of the
diminution in their response outside a narrow frequency band around their resonance frequency
and the need for testing over a wide frequency range due to the issues discussed in the last
section.

Wiltse and Glezer (1993) introduced a clever amplitude modulation method to flow
control problems to overcome this problem. The piezoelectric actuator is resonantly driven with
a carrier waveform, e(t), which is amplitude modulated with a time-harmonic wave train:

e(t)=[1+sin((omt+pm)]Arsin(coct) (3)

where A, is the amplitude of the carrier signal, E is the degree of modulation (0 C 1 ), w0 is

the carrier frequency (or the resonant frequency of the actuator) in rad/s, wom is the modulation

frequency (which is also the desired excitation frequency or receptive frequency of the flow) in
rad/s, and yPm is the phase of the modulating signal. By using trigonometric identities, one can

show that e(t) contains frequency components at wc and 0_.om, However, when the

excitation amplitude is high enough, e(t) is demodulated by the nonlinear fluid dynamical

system that is associated with the formation and coalescence of nominally spanwise vortices.
This nonlinearity results in the presence of wc and oC±om and also Wm in the flow. In practice,

(oc is set at the resonance frequency of the piezoelectric actuator (which is usually >> w,) and

(om is set at the desired low frequency corresponding to the desired excitation frequency f,.

Along these lines, other modulation signals such as burst modulation and pulse
modulation can also be used. This modulation technique allows the actuator operating at its
resonant frequency to generate a significant flow disturbance while effectively manipulating
flows at characteristic frequencies of the flow. It provides a much more flexible approach than
matching the resonant frequency of the actuator with the receptive frequencies of the flow.

However, some features of the technique should also be kept in mind. First, the actuator
is driven continuously near its resonant frequency, so the probability of mechanical failure is
greater than when it is driven off resonance. Second, as mentioned above, demodulation of the
waveform is due to nonlinearities of the flow and actuator. As a result, feedback controllers
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designed based on a linear assumption may not work as desired. This aspect will be studies in
this research.

Actuation location. It is argued by many researchers that the optimal actuation location
is at the vicinity of the point of separation (Amitay et al. 2001, Seifert et al. 1996, Seifert and
Pack 2003). This is physically plausible since the disturbances introduced at this location can
most effectively transport momentum between the free shear layer and the separated region.
However, this has not been systematically studied because of some practical limitations, namely
the difficulty of installing multiple actuators inside an airfoil. Amitay et al. (2001) used an
unconventional airfoil that had an aft portion of a symmetric airfoil attached to a circular
cylinder forebody with a synthetic jet slot that could be adjusted by rotating the cylinder. They
state that the closer the control is located to the observed separation point, the less power is
required to reattach the flow. They also made an interesting point that if either the separation
location is unknown or practical limitations preclude control near the separation location, the
momentum coefficient CP may be manipulated to achieve optimal performance.

Besides the effects of actuation location discussed above, the interaction of adjacent
synthetic jet actuators has been investigated by Holman et al. (2003). They found that relative
phasing between adjacent actuators does not appear to affect the effectiveness of separation
control significantly for their airfoil (NACA 0025) and flow conditions (Re = 105 and

AOA =12°).
In summary, based on the previous studies it is suggested that slightly upstream of the

separation location is the "best" place to introduce actuation. Furthermore, a combination of
upstream leading edge and downstream trailing edge actuations may also be a good candidate
and remains to be investigated (Mittal et al 2005). Wu et al (1998) discuss this idea in the
context of the Kutta-Joukowski lift formula (L=-pUF), which assumes the flow is
incompressible and steady. In the formula, L is the lift, U is free stream velocity and F is the
circulation (a counterclockwise circulation is assumed positive). Although the separation is an
unsteady process, this formula still holds in a time-averaged sense for the entire flow. Based on
these arguments, if the combination of leading edge and trailing edge actuation can be designed
to alter the circulation of the airfoil, it should be able to control flow separation in some manner.

Effects of Reynolds number and compressibility. It is shown that control of flow
separation is insensitive to the Reynolds number at high chord Reynolds numbers of 11-30
million (Seifert and Pack 2003 A, B, Greenblatt and Wygnanski 2000). The Reynolds number
has a very weak effect on pressure distributions around the surface, regardless of the Mach
number.

On the other hand, strong Reynolds number effects are identified in the airfoil baseline
performance at moderately compressible flow conditions (Seifert and Pack 2001). Reynolds
number effects weaken as the Mach number increases and a stronger shock wave develops.
Compressibility tends to elongate the separation bubble and reduce the capability of periodic
excitation to shorten the separation bubble with similar excitation frequencies and momentum
(Seifert and Pack 2001).

It is also suggested by Seifert and Pack (2001) that in the presence of shock waves the
excitation location should be slightly upstream of the shock wave. If the excitation is introduced
well upstream of the shock wave, it has a detrimental effect on lift, drag and wake steadiness.
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1.3.3.2 Closed-loop separation control
Closed-loop experimental separation control has not yet received significant attention.

This section first reviews some development of the micro-electro-mechanical systems (MEMS)
based actuators because of their potential importance to high bandwidth closed-loop control
systems. Then the limited previous work on closed-loop separation control is presented.

For closed-loop flow control systems, the desired actuators should be fast, power
efficient, and reliable. In previous separation control studies, acoustic excitation (Hsiao et al.
1990 and Huang et al. 1987) seems facility dependent because the acoustic drivers stimulate the
wind tunnel resonant modes to excite the separated flow; oscillatory blowing valves (Allen et al.
2000) appear to have slow dynamic response; active flexible wall transducers (Sinha 2001) have
complicated structures despite its high actuation efficiency and ability to actuate and sense with
the same hardware. These drawbacks have limited the use of these actuators.

On the other hand, synthetic jet (ZNMF) actuators have been the focus of significant
research activities for the past decade due to their utility in flow control applications (Glezer and
Amitay 2002). They utilize the working fluid and do not need external fluid injection. They can
force the momentum transfer across the flow without net mass flux (thus the name "synthetic").
The design of synthetic jets is also flexible and the working frequency range can be tuned
according to different flow control applications. In addition, the recent paper by Gallas et al.
(2003) presents a lumped element model of a piezoelectric-driven synthetic jet actuator. They
provide a novel method to design and model synthetic jets, which makes them very suitable for
closed-loop separation control. In lumped element modeling (LEM), the individual components
of a synthetic jet are modeled as elements of an equivalent electrical circuit using conjugate
power variables (i.e., power = generalized flow x generalized effort). The frequency response
function of the circuit is derived to obtain an expression for Q., /VAc, the volume flow rate per

applied voltage. The comparison between the LEM and experimental frequency response is
shown in Figure 1-6.

For a variety of reasons, closed-loop control in a real-time experiment has been
traditionally difficult to achieve. In reduced-scale laboratory experiments, the characteristic
frequencies of separated turbulent flows are proportionally higher than those on full-scale
models, which requires high frequency sensing and actuating capabilities. Furthermore, real-
time experiments require the digital control system to sample at a minimum of twice of the
highest frequency of interest. The availability of hardware (including actuators, sensors and real-
time control systems) therefore imposes significant limitations on the complexity of the closed-
loop control system. Lower order system models are typically required to reduce the complexity
of the system.

Many model-based approaches are being developed and have shown promising results.
Proper Orthogonal Decomposition (POD) based low order models have been studied extensively
(Holmes et al. 1998; Tadmor et al. 2007) owing to their relatively high resolution and low
computational intensity. Other reduced-basis models have also been studied (Coller et al. 2000;
Wang et al. 2003). These models require that multiple measurements are simultaneously
available in the flow field. However, this is impractical in feedback separation control and
surface measurements are required in most applications. Ausseur et al. (2007) implemented a
POD/mLSM proportional feedback control using the velocity field and surface pressure data to
delay flow separation.

Some non-model based control approaches have gained favor because they bypass the
complication of modeling separated flow while focusing on the primary control objectives. For
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example, Banaszuk et al. (2003) and Becker et al. (2006) used an extremum-seeking closed-loop
control algorithm to optimize the pressure recovery and lift, respectively. The present author in
Tian et al. (2006) used a multi-dimensional optimization algorithm to optimize lift-to-drag ratio
over an airfoil. These approaches are capable of "training" the excitation signals to be most
effective in terms of the objective functions (i.e., pressure recovery, lift-to-drag ratio, etc.). The
main drawback of the above approaches is that they operate on a time scale that is much larger
than that of the flow dynamics. In other words, they work on time-averaged objective functions
by explicitly taking advantage of the nonlinear nature of the fluid dynamics. This approach has
the drawback of having to deal or cope with the nonlinear dynamics with no guarantee of
success. This kind of approach is an example of the quasi-static control scheme shown in Figure
1-4.

On the other hand, the dynamic feedback control is used to model and control separated
flow structures based on surface pressure data alone. The well-developed adaptive system
identification (ID) algorithms in the controls community are utilized to model the flow system
dynamics between the actuators and unsteady surface pressure sensors. The system ID
algorithms generate known actuation signals and relate these signals with the surface pressure
response measured by sensors. Linear dynamical equations are then used to model the
relationship in a gradient descent sense (Haykin 2002). The system therein includes the dynamics
of the actuators, the flow structures excited by the actuation, and the dynamics of the sensors.
The system information is then used to predict the subsequent evolution of the pressure
fluctuations. Control is applied using a spanwise zero-net-mass-flux (ZNMF) actuator slot by
attempting to reduce the power of the surface pressure fluctuations in a closed-loop fashion, thus
suppressing the unsteady flow fluctuations based on predicted flow characteristics. A similar
idea has been applied to control of flow-induced cavity oscillations (Cattafesta et al. 1999) and
turbulent boundary layer control (Rathnasingham and Breuer 2003). This kind of approach can
be categorized as a dynamic control scheme shown in Figure 1-4.

1.3.4 Closed-Loop Control Algorithms
According to the classification in Figure 1-4, the control algorithms can be divided into

two categories: quasi-static and dynamic. Optimization algorithms are used in this research as
quasi-static algorithms. They are used to optimize target functions (such as lift, pressure
recovery, etc.) in a recursive but static or time-averaged fashion. On the other hand, recursive
system identification and disturbance rejection algorithms are widely used in active noise control
area as dynamic algorithms. No one has attempted to apply these algorithms to the closed-loop
separation control problem. This section gives a brief review of the two types of the algorithms.
Details will be given in chapter 2.

1.3.4.1 Optimization algorithms
Optimization algorithms are widely used by decision-makers (e.g. economists,

governments). They often need to choose an action to optimize target or cost functions, such as
income, profit, etc. In a typically optimization problem, one is given a single function f that
depends on one or more independent variables. The goal is to find the value of those variables
where f is a maximum or a minimum value. In this research, various optimization algorithms
are used to maximize/minimize different cost functions, such as lift, drag and pressure recovery.
When using the optimization algorithms, some constraints are typically included in the
algorithms. For example, one often seeks to limit the energy expenditure while optimizing the
cost function. One should also notice that, unlike the applications used by the decision-makers,
the cost functions used in this research are measured by sensors instead of analytical functions.
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Some established minimization and maximization algorithms are summarized by Press et
al. (1992). Most optimization algorithms can be easily implemented in a multi-dimensional
space. The downhill simplex algorithm and the Powell's algorithm do not require derivative
calculations. Between these two algorithms, the downhill simplex algorithm is more concise and
self-contained. Both of them require storage of order N', where N is the number of dimensions
or independent variables. Two other algorithms, the conjugate gradient and quasi-Newton
methods, do require the calculation of derivatives. The conjugate gradient method requires only
order N storage, while the quasi-Newton method requires storage of order N2 . On the other
hand, none of the algorithms mentioned above are guaranteed to find a global extremum. They
can lead to local extrema. Finding a global extremum is actually a very difficult problem. Two
standard methods are typically used to improve the probability of finding a global extremum: 1)
search for local extrema from various initial conditions and pick the most extreme of these; 2)
perturb a local extremum to see if the algorithm goes back to the same value or finds a better
result.

There are several global search algorithms that are currently active in research(e.g.
Genetic Algorithms (GA) (Holland 1975), Particle Swarm Optimization (PSO) (Kennedy 1997)
and Simulated Annealing Method (Haftka and Gfrdal 1992)). The genetic algorithms and the
particle swarm optimization are both derived from biology. They are population-based
algorithms, namely they generate a population of points at each iteration and the population
approaches an optimal solution. The GA and PSO take advantage of the large search population
to increase probability of approaching a global optimum. The simulated annealing method is an
analogy with thermodynamics, especially with the way metals cool and anneal, in which process
nature finds the minimum energy state. The essence of the algorithm is to allow increase of cost
function with some probability to improve the changes to find a global minimum.

Another optimization algorithm that has been applied to flow control problems is called
the extremum-seeking algorithm. As a self-optimizing control algorithm, the extremum-seeking
control was first introduced in the 1950s. After Krstic and Wang (1999) provided the stability
studies, there has been a resurgence of interest of this control algorithm. Banaszuk et al. (2003)
attempted to use this algorithm in the diffuser separation control problem. They were successful
in maximizing the pressure recovery in the diffuser. They also used this algorithm to control
combustion instability (Banaszuk et al. 2000).

1.3.4.2 System identification and disturbance rejection algorithms
System identification and disturbance rejection technologies are well developed and

various algorithms are available in the active noise control area. Cattafesta et al. (1999) have
applied these algorithms to other flow control problems, such as cavity resonance control. No
one has attempted to apply this kind of approach to the separation control problem. In this
research, this approach is investigated. Some system identification and disturbance rejection
algorithms are reviewed in this section.

System identification algorithms. In general, system identification (ID) uses measured
signals (i.e., inputs and outputs of the system) to identify (or estimate) the unknown system
dynamics. It provides necessary system information for control algorithms. System
identification algorithms can be divided into two categories: offline (or batch) and online (or
recursive). Offline algorithms first acquire data and then try to estimate a low-order dynamical
system model using these data offline. Online algorithms identify systems recursively while
acquiring data in real-time. Online system identification is also known as adaptive filtering.
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Least square (LS) identification algorithm is a generally used offline algorithm. Akers
and Bernstein (1997 A) applied this approach to the ARMARKOV/LS identification algorithm
with an ARMARKOV representation (see Chapter 2 for a detailed description of the algorithm).
The ARMARKOV/LS identification algorithm uses vectors comprised of input-output data with
a least-squares criterion to estimate a weight matrix containing a specified number of Markov
(i.e., pulse response) parameters of the system. Then the eigensystem realization algorithm
(ERA) (Juang 1994) is used to construct a minimal state space realization of the system. This is
referred to as the ARMARKOV/LS/ERA identification algorithm.

The ARMARKOV/LS/ERA identification algorithm has two clear advantages compared
to the ARMAALS identification algorithm (Akers and Bernstein 1997 A). First, eigenvalues of
the ARMARKOV representation are less sensitive to noise compared with eigenvalues of the
ARMA representation. Second, the singular value decomposition of a block Hankel matrix
constructed from the estimated Markov parameters provides an efficient model order indicator
(Juang 1994, pp. 139).

As far as online algorithms are concerned, the least-mean-square (LMS) algorithm is the
most commonly used algorithm. A more computationally intensive algorithm called the
recursive-least-square (RLS) algorithm has faster convergence and smaller steady-state error
than the LMS algorithm (Haykin 2002) but is more computationally intensive. Two different
types of structure that can be applied to each of the algorithms are the finite-impulse-response
(FIR) and the infinite-impulse-response (IIR) filters. The FIR filter is widely used due to its
simple architecture and inherent stability as an all-zero model. However, its simple structure
introduces difficulties for a system with low damping. The IIR filter can solve this problem with
significantly lower-order and, therefore, lead to reduced computational expense. Unfortunately,
the disadvantages of an IIR filter include more complicated adaptive algorithms compared with
an FIR filter and the possible stability problems introduced by the pole(s) in the model (Haykin
2002; Shynk 1989; Netto and Diniz 1995).

Applying the LMS algorithm to the ARMARKOV representation, Akers and Bernstein

(1997 B) introduced the recursive ARMARKOV/Toeplitz algorithm that is based upon recursive
identification of the Markov parameters of a system. It estimates the Markov parameters
recursively using time-domain, input-output data and then constructs the estimated model with
the Markov parameters.

Disturbance rejection algorithms. As mentioned earlier, one of the possible control
schemes for closed-loop separation control is to reduce velocity and pressure fluctuations in the
separated region. This control scheme is generally called disturbance rejection.

Disturbance rejection controllers have been widely used in active noise control
applications (Kuo and Morgan 1996). Recently, researchers have started to apply adaptive
controllers to flow control problems. For example, Cattafesta et al. (1999) used an adaptive
system to suppress the disturbance induced by the flow over a weapons-bay cavity. The
advantages of using adaptive controllers are that they can adapt themselves according to different
flow conditions and that they can potentially reduce the energy cost associated with the flow
control problems. Cattafesta et al. (1997) showed that the control of cavity flow with closed-
loop control requires one order-of-magnitude less power than that with open loop control.

Commonly used disturbance rejection algorithms include Filtered-X LMS (FXLMS),
Filtered-U LMS (FULMS), Filtered-X RLS (FXRLS) and Filtered-U RLS (FXRLS) algorithms
(Kuo and Morgan 1996). Besides these, the ARMARKOV adaptive control algorithm was first
introduced by Venugopal and Berstein (1997) and further developed by Sane et al. (2001). The
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underling model structure of the ARMARKOV adaptive control algorithm is the ARMARKOV
representation, which is an extension of the ARMA representation with explicit impulse response
(Markov) parameters. The ARMARKOV adaptive control algorithm doesn't require a model of
the control-to-reference transfer function nor does it require a model of the transfer function from
plant disturbances to sensors (Sane et al. 2001). The only transfer function needed is the control
to performance transfer function, which can be identified simultaneously using the recursive
ARMARKOV/Toeplitz system identification algorithm described in the previous section.
1.4 Objectives

" To explore suitable linear and nonlinear control objectives and strategies for
closed-loop control of separated flows.

" To implement optimization algorithms and system identification/disturbance
rejection algorithms for closed-loop control of separated flow on a wind tunnel
airfoil model (NACA 0025).

* To analyze performance, adaptability, costs, and limitations of closed-loop
separation control algorithms.

" To investigate the relevant flow physics of successful feedback control strategies.
1.5 Approach

The proposed closed-loop separation control includes two key parts: modeling and
control strategies. As far as modeling is concerned, two types of approaches can be implemented
to model the flow characteristics: 1) a reduced-order flow model based on the Navier-Stokes
equations, 2) system identification techniques. The first approach is widely used in
computational flow control simulations. This research will concentrate on experimental studies
by using system identification techniques that have not yet been applied to the separation control
problem. The dynamical systems model will include the dynamics of actuators, sensors, and the
flow system. Then the disturbance rejection algorithm is used to suppress flow fluctuations (e.g.,
measured by unsteady pressure transducers).

One the other hand, for the non-model based optimization algorithms, no system
identification is needed. The possible cost functions for the algorithm are summarized as
follows. Since the suction pressure region of the upper surface of the airfoil is primarily
responsible for lift generation and drag reduction, the static pressure recovery coefficient
dCp/d( x/c) over the upper surface of the airfoil is a reasonable candidate as a cost function to

maximize for feedback separation control. Other candidates for cost functions are lift and drag
or combinations of these (e.g., lift/drag ratio). The benefit of using lift/drag is that L/D is a
global or integrated quantity and is less sensitive to sensor location. The objectives for the
controller are clear, i.e. to minimize drag and to maximize lift or the ratio of lift/drag. The
experimental setup uses a lift/drag balance for this purpose.
1.6 Outline of This Dissertation

A theoretical background on system identification, control, and optimization algorithms
will be discussed in Chapter 2. Simulation results and validation experiments of the algorithms
will then be presented in Chapter 3. Chapter 4 describes the experimental setup and techniques
for this research. Chapter 5 presents experimental results and discussion. Summary and future
work will be presented in the last chapter.
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Figure 1-1. Separation of flow over an airfoil.
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Figure 1-2. Types of velocity profiles as a function of pressure gradient (White 1991).
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Figure 1-3. Lift and drag coefficients of NACA 0025 airfoil at Re = 100,000.
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Figure 1-6. Comparison between the lumped element model (-) and experimental frequency
response (o) measured using phase-locked LDV for a prototypical synthetic jet (Gallas et
a]. 2003).
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2 Theoretical Background

This chapter presents detailed descriptions and derivations of the algorithms that are used
in this research. The algorithms include optimization, system identification, and disturbance
rejection algorithms.
2.1 Optimization Algorithms

Some established minimization and maximization algorithms are summarized by Press et
al. (1992). The downhill simplex algorithm and the Powell's algorithm do not require derivative
calculations, which makes them good candidates for this research since derivative calculations
are problematic for (usually noisy) experimental data. Between these two algorithms, the
downhill simplex algorithm is more concise and self-contained. The so-called extremum-
seeking algorithm has been applied to a flow control problem by Banaszuk et al. (2003). Thus,
this algorithm is also summarized here.

2.1.1 Downhill Simplex Algorithm
The downhill simplex algorithm is implemented to minimize an objective function (e.g.,

drag-to-lift ratio). The benefits of the algorithm are its simplicity, applicability to
multidimensional optimization and robust performance. The algorithm searches downhill in a
straightforward fashion that makes no prior assumptions about the function. The downhill
simplex algorithm requires only function evaluations, not derivatives. Since it does not make
any assumptions about the function, it can be very slow sometimes. However, it can be very
robust in the sense that it guarantees to find a minimum (at least a local minimum) (Press et al.
1992).

A simplex is the geometrical object consisting, in N dimensions, of N+I points (or
vertices) whereas the N+I points span a N -dimensional vector space (Press et al. 1992). For
example, in two dimensions, a simplex is a triangle. In three dimensions, it is a tetrahedron,
although not necessarily a regular tetrahedron. The downhill simplex algorithm makes use of the
geometrical concept of a simplex and works its way in the local downhill direction until it
encounters a (at least, local) minimum.

The key steps of the downhill simplex algorithm are summarized as follows:
* Evaluate the cost function at chosen initial points. Note that there should be N+1

initial points, defining an initial simplex. For two or higher dimensions, the initial
points should not be linearly dependent.

• Take a series of steps to move in the downhill direction. As an example, the steps
for three-dimensional search are illustrated in Figure 2-1. In the figure,
"Reflection" means that the algorithm reflects the highest (i.e. worst) point about
the center of the three lower (i.e. better) points with some coefficients to the other
side of the plane and then evaluates the cost function at the reflected point.
"Expansion" means to expand further along the reflection direction when the
"Reflection" point does improve (i.e., lower the cost function). "Contraction"
means to move the highest (i.e. worst) point towards the plane formed by the three
lower (i.e. better) points, thus contracting the original simplex. To summarize, all
the necessary steps taken here are to move the worst point reference to the plane
formed by the other better points to search for a better point.
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* Stop when some termination criteria are met. For example, the moving distance
is smaller than some tolerance value.

2.1.2 Extremum Seeking Algorithm
Artiyur and Krstic (2003) present the theoretic details and some applications of the

extremum-seeking algorithm. Simulations using the algorithm can be done following the block
diagram in Figure 2-2. The simple proof that this algorithm will drive f(0) to its extremum is

summarized below.

First, assume that f(O) has a minimum f and can be approximated as the following form:

f(0)=f*+ f (020!)2  (4)

where 0* is the optimal input and f is the local curvature of the cost function f(O) near 0*.

Since it is assumed that f(O) has a minimum, f should be larger than zero for this case.
Next, define the estimated error:

6=0* -6 (5)

where 0 is the estimated optimal input.
From Figure 2-2,

0=6+asin(wt)=* -6+asin(wt) (6)

Substituting equation (6) into equation (4) results in

y=f(+)=f *- + [asin(wt)-6] (7)

Expand equation (7) and apply sin 2 (wt)= I -cos(2wt) to obtain
2

y f*a f 2  f . (02
y=f + 2 sin 2 (wt)-f "aOsin(wt)+ 2

f a2 f"a2  (8)
+ 4 cos(2wt)-f"a0sin(wt)+ 24 42

From Figure 2-2, this signal y will pass through a high pass filter Let 0<wh<w,

S+W h

then all the DC components in equation (8) will be removed while the oscillatory terms remain.
f a2

qr>- - cos(2wt)-f a0sin(wt) (9)
4

Next, q is multiplied by asin(wt) to give
f"a2

c=- f cos(2wt)sin(wt)-f "a0sin(wt)2  (10)
4

Using the trigonometric identities sin 2 (Wt)- 1-cos(2wt) and
2

sin(3wt)-sin(wt) rslsi
cos(2wt)sin(wt)= results in

2
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f "a2 sin(3wt)-sin(wt) -f a0 1-cos(2wt)
4 2 2 (11)f"a0 f"a2  f"a2  f"a0 (1

-C + f sin(wt)- asin(3wt)+ f cos(2wt)
2 8 8 2

From Figure 2-2, this signal c passes through a low pass filter. Let O<w , <w, then all the

high frequency terms will be removed and only the DC term remains.

f "a0 (12)

2

This signal then passes through an integrator

= fa k (13)
2 s

This gives

6s=0= f a 6 (14)
2

From equation (5), assuming f is fixed, then

0=-O (15)

From equations (14) and (15), one can obtain the first-order differential equation

0=- a 0 (16)
2

with the solution
fak

0=0 0e 2 (17)

Since f is assumed to be positive and a and k are positive constants, the estimated error
0 will exponentially decay to zero.
2.2 System Identification Algorithms

System identification (ID) uses measured signals (i.e., inputs and outputs of the system)
to identify (or estimate) the unknown parameters of an assumed dynamical systems model. It
thus provides the necessary system information for control algorithms. System identification
algorithms can be divided into two categories: offline (or batch) and online (or recursive).
Offline algorithms first digitize a data record and then try to estimate the system using these data
offline, usually via a least squares method. Conversely, online algorithms identify systems
recursively while acquiring data in real-time. Online system identification is also known as
adaptive filtering.

In this research, three system ID algorithms will be investigated: ARMARKOVLS,
ARMARKOV/LS/ERA and recursive ARMARKOV/Toeplitz algorithms. They are all based on
the ARMARKOV representation, which explicitly contains Markov parameters (i.e., pulse
response) of the system. The well known ARMA representation contains only one Markov
parameter and is a special case of the ARMARKOV representation. The main advantage of
these algorithms is their robustness with respect to low signal-to-noise ratios (Akers and
Bernstein 1997 A, B). The ARMARKOV/LS algorithm is an offline algorithm and implements
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an overparameterized realization of the system. The ARMARKOV/LS/ERA algorithm uses the
same procedures to identify the system parameters as the ARMARKOVLS algorithm, but
implements a minimal realization of the system. The recursive ARMARKOV/Toeplitz
algorithm is an online algorithm. The advantage of using an online algorithm is that it can adapt
to the changing system.

2.2.1 ARMARKOVLS Algorithm
Consider the discrete-time finite-dimensional linear time-invariant system:

x(k+ 1 )=Ax(k)+Bu(k) (18)

y(k)=Cx(k)+Du(k)

whereA( R"",B E Rn.i,CE Rlxn,D- R"X', and i and 1 are the number of inputs and outputs,

respectively, of the system. For a single-input/single-output (SISO) system, i=l=l. The
algorithm is derived below for a SISO system.

The Markov parameters Hi are defined by

H i D j=-I (19)

H ACAIB j > 0

Next, define the ARMARKOV regressor vector D.(k)e R2"+ :

y(k-p.)

q)() y(k-i-n+l) (0
u(k) (20)

u(k-R-n+l)

where n is the order of the system and [t is the number of Markov parameters. Here, y and u
denote measured input and output of the system described in equation (18), respectively.

Next define the estimated output of the system

,(k)=W(p (21)

where the ARMARKOV weight matrix V is defined by

W [-AP H-1 L Hp-2 BPI (22)

and

A V 4 [ a p ] Ii nE R ( 2 3 )

The expression of the weight matrix *V is then determined to minimize the output error

cost function defined below.
First, define the output error

c(k)- y(k)-S'(k) (24)

and the output mean squared error cost function
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j = .I '() _T (l~T k)(k) (25)
Nk2 Nk=12

where N is the number of measurements.
Substituting equations (20), (21), (22) and (24) into equation (25) results in

= J= -E (y (k) -*(k))T (y(k)-*WD (k)) (26)

1 , I
-= -IZ(y T (k)-_(T (k)T T) (y (k) -VV( (k)) (27)
N k=l 2

=J= (T (k) y(k)-_(D (k) *Ty(k)
(28)

-y T (k) *0 (k) +(DT (k) WT* (k) (,(k) )

Because (T (k) *Ty(k) and yT (k)W*D(k) are transposes of each other and are also

scalars, they are equal to each other. So,

J=N _1_(Y (k "y(k) -2(DT (k)Wr y (k) +(DT (k) WT* (k)<(D) (29)

N k=12

To find the W to minimize the output error cost function defined in equation (25), we set
the partial derivative of J with respect to W equal to zero. So,

= 0- =o (30)

From matrix calculus, we derive each term of J in equation (29) first,

ap/T (yT (k)y(k)) =0 (31)

aT (DqT * Ty k)=2((q (DT yk))T) T  T

aNVT (2 (k)w(k))=2((k)y(k)=2 T(k) y(k) (32)

aT (4 T (k) *T*4D (k)) = a (k)w Tw k)) d(* T *)

W-T" a(* T *) d* T J
= [(DT (k) (>(k) (2*/T)] T  (33)

= 2*( T (k) (k)

Thus,

0 = = - 2 (k) y(k)+2*1T (k) D(k)] (34)

I N I N(5= , I*D (k ND ( k --ED (k)y(k) (35)

Nk=l N k=
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Finally, the expression of the weight matrix W to minimize the output error cost function
is given by

@=-[ - (k)y(k) ] DT (k)D(k) (36)

After extracting the coefficients A.,B3 and Hi from W via equation (22), we

can obtain the system transfer function of the ARMARKOV representation, which is defined as
follows

H I H 1 +n- I z +L+Hp 2z , l1 Zn' +LP13,,G1 (z)= "+." . +(37)
Z pn +apl z . L-+- ,n

This is called the ARMARKOVLS identification algorithm and this algorithm assumes
the numerator has the same order of the denominator for simplicity. For the systems whose
numerators and denominators do not have the same order, some parameters described in equation
(37) will be identified to be approximately zero.

The well-known ARMA representation only has one explicit Markov parameter and it is a
special form of the ARMARKOV representation with t=l in (37)

H. Zn +[3Z,nZ"I +L+P31,
G2 ( z +W=. (38)

Zn +a 11Zn- +L±al,n

For system identification problems, the order of the system is usually not known in
advance, so we adjust n and / to improve the performance of the system identification
algorithm.

2.2.2 ARMARKOVALS/ERA Algorithm
The ARMARKOV/LS/ERA algorithm obtains a minimal realization of the transfer

function of the system from the Markov parameters. It uses the same algorithm as the

ARMARKOV/LS algorithm to obtain the weight matrix W by equation (36). Then the Markov
parameters Hi can be extracted from equation (36) by using equation (22). Next, define the

Markov block Hankel matrix for a SISO system:

Hr,sj =](39)
Hj+r Hj" H+s,

where r,s are any positive integers. In this research, r is set to be equal to s for convenience.
Then, we apply the singular value decomposition as describe in Akers and Bernstein

(1997A)

Hr,so =PSr,, QT  (40)

where pTp=QTQ=I and Sr,, = diagonal matrix of singular values.

From the Eigenvalue Realization Algorithm (ERA), (Juang 1994, pp. 133-137)
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A=Sr,s" 2pTH,,QSr, 12

B=Sr,s 
2 QT Es (41)

C=ErTpSr,sI
2

D=H_

where E i = 10 The ERA also requires r,s > n-I.

This arrives at the minimal state space realization of the system

G3(z)=C(zA-I)i B+D (42)

This is called the ARMARKOV/LS/ERA algorithm. It is a minimal realization because
the system order can be chosen as a minimal value when using the singular value decomposition
in equation (40). However, an important drawback of this algorithm is that the singular value
decomposition in equation (2.23) is very computational intensive.

Theoretically, the rank of the Srs matrix should be the rank of the system. However, in

practical applications, the singular value decomposition will return more singular values than the
system order due to measurement noise, and so the extra singular values should be small. So,
only the largest n singular values obtained by the singular value decomposition will be used.

2.2.3 Recursive ARMARKOV/Toeplitz Algorithm
First, define the ARMARKOV regressor vector (D,, (k)r R2n+2p2+p

y(k-g)

(D k Ay(kjt-p-n+2) (43)

u(k)

u(k-pt-p-n+2)

where n is the order of a system, t is the number of Markov parameters, and a new parameter

p determines the averaging window of input-output data that appears in the above regressor

vector.
It follows that

,(k)=WOJI (44)

where the ARMARKOV/Toeplitz weight matrix W RpX(2 +2P2+, ) is the block-Toeplitz matrix
defined by

0 ' (45)

W ". "...0 " " " " " 0

0 .. 0 -AP 0 .. 0 H(-4 H 2 BP
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and A - =[ t.0I0IR x " ,B " -4[3 , ... Pn] R!x,and Hj are the Markov parameters.

As before, define the output error ,(k) and the output error cost function J (k)

e(k) " Y(k)-Y(k) (46)

J (k) _-I &T(k) E(k)(7

2

Next, the gradient of J (k) with respect to W (k) can be calculated by

WJ(k) =-U o[ [(k)I)T (k)] (48)

a*(k)

where 0 denotes the Hadamard product (i.e. element-wise matrix product) and U Rpx 2n 2p2+p)

is defined by

-I1Xn 0 ... 0 11 x(t+n)  0 ... 0

0 49

0 . xn 0 0 Ix(p+n)

Finally, the recursive update law for the weight matrix W is given by

*(k+ 1) = *(k) - 71(k) W(k) (50)

In equation (50), il(k) is the adaptive step size. The optimal adaptive step size To., (k) is

defined as

r () I(k)j' 2 (51)
rlp'(k ="W)(k)

aW(k) 2

where I1-112 denotes the spectral norm.

The computationally efficient step size ileff (k) (namely, it is more computational efficient

since it only needs to calculate the normal ARMARKOV regressor vector (D, (k)) is defined as

q,f (k) -  1 (52)

In order to assure convergence, Tl(k) should satisfy ij(k)=aIoP(k) or rl(k)=alCff(k),

where aE: (0,2).

After W matrix is obtained by (50), we can extract the coefficients Ap , and H, from

(22). Then, we can obtain the system transfer function of the ARMARKOV representation form,
which is defined in equation (37). Since the A,,B, and H, coefficients are updated every

iteration, this algorithm is called as the recursive ARMARKOV/Toeplitz algorithm.
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2.3 Adaptive Disturbance Rejection Algorithms
Disturbance rejection controllers have been widely used in active noise control

applications (Kuo and Morgan 1996). A block diagram of a standard disturbance rejection
problems is shown in Figure 2-3, where w is the disturbance, u is the control signal, y is the

reference signal, z is the performance signal and Gc is the disturbance rejection controller. The

goal for the controller is to generate a control signal u to minimize some cost function of the
performance signal. The four transfer matrices, namely, the primary path G,,w, the secondary

path G ,,, the reference path GW and the feedback path Gy., are standard terminology in the

noise control literature (Kuo and Morgan 1996). The feedforward-type disturbance rejection
algorithms, such as FXLMS and FXRLS, assume that GyU=O (no feedback path) and Gyw=I.

On the other hand, the ARMARKOV disturbance rejection algorithm does not make these
assumptions. All the disturbance rejection algorithms require identifying the secondary path G,
by online or offline system identification methods.

2.3.1 ARMARKOV Disturbance Rejection Algorithm
Consider the linear discrete time two-input/two-output system (shown in Figure 2-3) given

by

z(k)=G,, w(k)+G. u(k) (53)

y(k)=G YW w(k)+G Y u(k) (54)

where the disturbance w(k), the control u(k), the reference y(k) and the performance z(k) are

in Rm- , Rm', R" and R' respectively, and m and 1 denote the number of inputs and outputs,
respectively. The system transfer matrices Gzw (primary path), G,. (secondary path), Gyw

(reference path) and GY, (control path) are in Rlxmw , R' xm", Rx ' and RIlxm' , respectively.

The objective of the active noise or vibration control problems is to determine a controller

G c c Rmux'y that produces a control signal u(k)=Gcy(k) such that the performance measure z(k)

is minimized (Sane et al. 2001). A measurement of z(k) is used to adapt G.
The ARMARKOV form of (53) - (54) is

n AI n

z(k) I -ct,z(k-[t-j- l )+J H,wj 2w(k-j+lI)+J 1,ww(k-p -j- 1)
j=I j=I j=1 (55)
+lHzj-2 u(k-J +1)+lZ B .ju(k-[t-j+lI)

j=1 j=I
n na

Y(k)= Y-(jY(k-wJ-1 )+J Hy,-w(k-j+l1)+l B,,w(k-j-+l)
j= I j= I = I (5 6 )

P n

Hp,j-2u(k-j+ 1 )+J BYju(k-i-j+ l)
j=I j=I

where a ER, B,wj,Hzw ERIm , Bzuj,Hzuj e Rl,xm-, BywPHywi E RIxm-, ByUi,Hy,j E RI}xm', n

is the order of the system, and / is the number of the Markov parameters.
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Then, we define the extended performance vector Z(k), the extended measurement
vector Y(k), and the extended control vector U(k) as

Z(k) - [z(k) L z(k-p+ 1)]T (57)

Y(k) [y(k) L y(k-p+ 1)]T  (58)

U(k) =[u(k) L u(k-p, + 1)]T  (59)

where p is an averaging or windowing parameter and p, =(gt+n+p- 1).

The ARMARKOV regressor vectors (D, and ODY are defined by

OD, [z(k-)... z(k-t-p-n+2) w(k) ... w(k-gp-n+2)] T  (60)

and

qyw - [y(k-p.) ... y(k-gt-p-n+2) w(k)... w(k-tp-n+2)IT  (61)

Then (55) and (56) can be written as

Z(k)=Wzw 4, +B U(k) (62)

Y(k)=Wr, D w +B yu U(k) (63)

where W w, Bzu, Wu, and BY are the ARMARKOV weight matrices. Only B,1u will be used in

the control algorithm (shown later), and it will be obtained using the ARMARKOV/Toeplitz
system identification algorithm. The ARMARKOV control matrix B,u is given by

Hzu,- I H2u,p 2  Bzu., zuB , 0 ,xmU 0 1,Xm 1
Bz1 0 • ""(64)

0 1'XM " Hzu.-l H zu,A2 Bzu,i ... Bzu,n

where 01'XmU is the zero matrix.

Next, the ARMARKOV adaptive disturbance rejection algorithm is derived. The control
signal u(k) is given by

ncPc n,

u(k)=Z -a ju(k-4t -j+ 1 )+ Hcj 2 y(k-j+ 1 )+Z B,jy(k-ic -j+ 1) (65)
j=I j=I j=I

where aci ( R and H,j,B,j G Rm .

Similarly, the delayed versions are
n, Pc n.

u(k- 1 )=E -0tCu(kjtc -j)+E Hcj,-iy(k-j)+ E Bcjy(k-g c -j) (66)
j=I j=1 j=1
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u(k-p, + 1 )=l -auCu(k-t.C -j-pc +2)
J=1 

(67)

+- Hj,_ y(k-j-p, +2)+l- Bj.y(k-gc -i-P +2)
j=l j=l

Substituting all these equations in (59) and reordering gives
PC

U(k)=l- LiO(k-i+ 1)R i(.y (k) (68)

where

O(k)-A[-at,c(k)Im "-ac,n, (k)i. H.o(k)"n. H,,, 2(k) B.,(k) ..- Bnc(k)] (69)

D. y(k) - [u(k-!t,) ---u(k-.t.-n,-p,+2) y(k)... y(k-g.c-n,-p,+l)] T  (70)

L i  nm (71)
LO(P-i)M. XM.

an i  [0q,x(i-I)m. lq,xq, Oq,x(pci)m, Oq,x(i'1)l, 0q,xq, 0 q,x(p.-i)lI  (72
k q2X(i-)M. 0q2 xql 0q,x(p.-i)-. 0q2X(i-')ly Iq2xq, 0q2 x(p, -i)ly

with q, A n,m. and q2A- (n,+p,, -l)lY.

Thus from (62) and (68), we obtain
PC

Z(k) 4 W1w b (k)+Bzu Li0(k-i+ 1 )R,4D, (k)=W 1w (k)+B ,U(k) (73)
i=1

Next, evaluate the performance of the current value of 0(k) based upon the behavior of
the system during the previous p steps to result in the definition of the estimated performance

Z(k) by
PC

2(k) A W w D, (k)+B,.u L0(k)R i (D,,y (k) (74)

Substituting (73) into (74), we obtain the estimated performance in terms of known and
measured variables

Z(k)- Z(k)-B. U(k)-jLjO(k)RjIDu(k) (75)

Using (75), we define the estimated performance cost function

J(k)= 2 T (k)Z(k) (76)
2
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The purpose for the ARMARKOV adaptive controller is to obtain the controller
parameters 0(k) such that the performance cost function J(k) is minimized. Using matrix
derivative formulae, the gradient of J(k) with respect to 0(k) is given by

J(k) _ L T BT Z(k)(k)RT  T
-=JIB 2k uyk)Ri(77)

0(k) i= IU'z

The gradient is used in the update law
OJ(k)

0(k+ 1)=0(k)-iI(k) aj(k) (78)a0(k)

where ril(k) is the adaptive step size. An implementable adaptive step size qimp (k) is used

T'li p (k) _A! 1 2(9
p(: JJB, 112 IIDu o(k)112(79

where II'IIF and 11112 denote the Frobenius norm and the spectral norm (Golub and Van Loan

1996), respectively.
The steps involved in implementing the ARMARKOV adaptive disturbance rejection

algorithm are summarized as follows:
" Obtain the matrix B,. (eqn. (64)) by using the recursive ARMARKOV/Toeplitz system

identification algorithm (eqn. (45)) or the offline ARMARKOVLS (eqn. (36)).
• Calculate the control signal u(k) from the controller parameter matrix 0(k) and the vector

• y(k) (eqn. (68)).

* Use the signals u(k), z(k) and y(k) to update the vectors Z(k) (eqn.(75)) and (D,uy(k)

(eqn. (70)).

" Calculate the gradient ajk

* Calculate the implementable adaptive step size Tli,,p(k) (eqn. (79)).

* Update the controller parameter matrix 0(k) -- 0(k+1) (eqn (78)).
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3 Simulation and Validation experiments

Before the algorithms are used for closed-loop separation control in the wind tunnel
experiments, they are tested by using Matlab/Simulink simulations or validation experiments.
The purpose of this chapter is to ensure that the algorithms work as desired.
3.1 Optimization Simulations

3.1.1 Downhill Simplex Simulation Results
The downhill simplex algorithm is programmed in Matlab. The performance of the

algorithm is illustrated by a 1-dimensional and a 2-dimensional simulation cases. This algorithm
can be easily extended to higher dimensions.

In the I-dimensional case, the cost function f(x) is chosen to be an 8 th order polynomial
function of x, which has a local minimum at x=14.2 and a global minimum at x=67.3 as shown
in Figure 3-1. Two initial conditions are selected to demonstrate that this algorithm can be
"trapped" by a local minimum. The first initial condition is at about x=45. One should notice
that for this 1-dimensional problem, there should be two independent points (a simplex) as the
initial condition. As shown in Figure 3-1, the downhill simplex algorithm crawls down to the
global minimum (red trace). On the other hand, the second initial condition is at about x=30,
which leads the algorithm to the local minimum (blue trace). This is dictated by the inherent
"downhill" nature of the algorithm.

Another example is to demonstrate how the downhill simplex algorithm works in two-
dimensional space. The cost function is obtained in Matlab by the "peaks" command. The
formula for the cost function is as follows:

Z = 3[(l -X)2 e- _-2 (Y+l) _1O( +X l_y 5 )e 'Y'- I-e-4X+12 (80)
5 3

This function has two local minima and a global minimum as shown in Figure 3-2.
Similar as the 1-dimensoinal case, the optimization algorithm converges to either a local
minimum (blue trace) or the global minimum (red trace) depending on the initial condition.
Although each iteration of the algorithm requires several steps (Chapter 2), it only takes 9
iterations to find the global minimum. This result is encouraging and suggests that it can be fast
for some cases. One can also adjust the termination tolerance to control the time consumption.
On the other hand, the time consumption of the separation control experiments is also dependent
on other factors, such as data acquisition. This will be discussed further in Chapter 5.

3.1.2 Extremum Seeking Simulation Results
The extremum seeking algorithm is implemented in Simulink. Figure 3-3 shows the

simulation block diagram for the extremum seeking control. In the simulation, the algorithm
seeks a maximum instead of a minimum. One can easily modify the program to search for a
minimum by adding a negative sign to the cost function. Two numerical models are tested. The

first model is a quadratic function f=f*-(O-O*)2 , which has a single maximum f* at 0=0as

shown in Figure 3-4. In this case, f* is set to 10 and 0* is set to 5. The second model is a
double hump model, which is fitted by a 81h order polynomial function, which is the same as the
model shown in Figure 3-1 with a opposite sign. It has a local maximum and a global maximum
as shown in Figure 3-5.

36



The ARMARKOV disturbance rejection algorithm requires the following three
parameters: the order of the controller n , the number of Markov parameters of the controller wi,
and the adaptive step size constant -y that controls the convergence rate of the controller.

The controller uses the system information identified by the ARMARKOV/Toeplitz
system ID with the parameters of p=n=2, t=10 and SNR=20 dB (shown in Figure 3-21). All
cases of the controller design use the same identified system.

Band-limited white noise with frequency of 0 - 150 Hz and variance of 0.09 is used to
excite the disturbance piezoceramics. Figure 3-26 and Figure 3-27 show the time data of the
performance and control signals with the parameters of nc =2, tc =20 and T = 1. The system ID

is off for the whole period and the controller is off initially and turned on at t = 20 sec. In Figure
3-28, the power spectra of the performance signal with control off and on are compared. The
power spectra were calculated by using the time data of 20-second duration with NFFT=1024,
50% overlap and a hanning window. The "control on" case is taken after the controller is turned

2 2

on for 30 seconds. The performance of suppression is calculated by 10glog,0 (off /Go ) and this

case gives 11.7 dB suppression. Interestingly, in Figure 3-28, the power around 70 Hz and 120
Hz of the "control on" case is higher than that of the "control off' case. This is generally defined
as spillover (Hong and Bernstein 1998). Hong and Bernstein (1998) used the Bode integral
constraint to analyze the spillover problem and concluded that the spillover is inevitable if the
reference and performance signals are collocated or the disturbance and control actuators are
collocated. For this vibration control test, the reference and performance signals are collocated,
thus the spillover is unavoidable.

Figure 3-29, Figure 3-30 and Figure 3-32 show the performance of the disturbance
rejection algorithm with varying no, g, and r, respectively, while other parameters are held

constant. From
Table 3-2 and Table 3-3, it is interesting to find that there is not much difference of the

suppression performance for varying n, and jtc. However, the step size parameter T does play
a significant role. Larger r gives much faster convergence and better performance. However,
if Y is too large, it is possible for the controller to become unstable. This tradeoff should be
kept in mind when choosing Y.

The disturbance rejection controller can also be run at the "ID and control" mode. In this
mode, the band-limited white noise with frequency of 0 - 150 Hz and variance of 0.09 is used to
excite the disturbance piezoceramics. Meanwhile, the band-limited white noise with frequency
of 0 - 150 Hz and variance of 0.01 is added to the controller output. The control signal is shown
in Figure 3-33 and the performance signal is shown in Figure 3-34. Comparing with Figure
3-27, the control signal of the "ID and control" case is significantly larger at the beginning
because of the additive signal uID and the evolution of the controller output is "buried" under it.

Figure 3-35 compares the power spectra of the performance signal of the two different
modes. It is surprising that the "ID and control" mode results in lower power around the natural
frequency of the beam. This is hard to see in Figure 3-34 because the "ID, then control" mode
seems much better. However, it is not surprising that the "ID and control" mode results in higher
power at other frequencies than the natural frequency because of the additive signal u,D. In
addition,

Table 3-5 shows that the "ID, then control" mode gives better suppression performance
of the overall power.
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Unfortunately, for this setup, it is not feasible to test the adaptability of the two modes.
However, this will be done in the wind tunnel experiments.

As a summary, the computational tests are conducted first to determine how the
parameters affect the computational complexity of the system ID and control algorithms. It is
shown that the averaging window number p has much more significant impact on the
computational intensity than the other two parameters for the system ID algorithm. The
dependence of the computational complexity vs. n is approximately twice of that for Ui.
Similarly it is found that the turnaround time of the control algorithm is approximately linearly
proportional to n, and wt, while the slope for nc is approximately twice of that for I,.

The ARMARKOV/Toeplitz system ID algorithm successfully identifies the system
(control model) and results in very good frequency response approximations. A significant
improvement of the performance of the ARMARKOV system ID over the ARMA (when ,i= 1)
system ID is found. However, too many Markov parameters of the ARMARKOV system ID
may be detrimental to the performance. Higher SNR improves the performance, thus when the
system ID is conducted with unknown noise, the input signal should be chosen as large as
possible within the maximum allowable level.

The order of the controller nc and the number of Markov parameters ji, do not play

significant roles on the performance of the ARMARKOV controller for this vibration control
test. However, this conclusion may vary with different systems and remains to be investigated.
The step size constant T significantly affects the convergence rate of the controller. T should
be chosen as large as possible before it makes the controller unstable. The spillover effect is
identified in this vibration control test. This effect is unavoidable because the "reference signal"
and "performance signal" are collocated (Hong and Bernstein 1998).

summarizes all the parameters that are used in the simulations. Recall that the detailed
derivation of algorithm is given in Chapter 2. Note that the parameters a and w are the main
factors that affect the convergence rate and stability. Thus, they are varied in the simulations to
understand how they affect the performance of the algorithm.

Figure 3-6 demonstrates how a affects the convergence rate while w is fixed to be 50
Hz. Clearly, the convergence rate increases when a decreases. This is consistent with the

analytical solution shown in eqn. (17) for k=l/a 2 , where the convergence rate (f"ak/2) is

dependant on 1/a. However, when a is too small, the algorithm becomes unstable. Figure 3-7

shows how w affects the convergence rate while a is fixed to be 0.001. Apparently, the
convergence rate increases with w. When w is too large, the algorithm again becomes
unstable.

Figure 3-8 and Figure 3-9 show the results of the double hump model. Clearly, the
extremum seeking algorithm drives the cost function f to the local minimum.
3.2 Vibration Control Testbed Setup

Figure 3-10 shows a detailed sketch of the whole vibration control testbed setup. A thin
aluminum cantilever beam with one piezoceramic plate bonded to each side is fixed on a block
base and connected to the ground. The two piezoceramic plates are used to excite the beam by
applying electrical field across their thickness. The piezoceramic plate bonded to the upper side
of the beam is called the "disturbance piezoceramic" because it is used to apply a disturbance
excitation to the beam. The piezoceramic plate bonded to the lower side of the beam is called
the "control piezoceramic" because it is supplied with the controller output signal to counteract
the disturbance actuator. The beam system has a natural frequency of about 97 Hz.
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The goal of the disturbance rejection controller is to mitigate the vibration of the
aluminum beam generated by an unknown disturbance signal. The controller tries to generate a
signal to counteract the vibration of the aluminum beam generated by the "disturbance
piezoceramic". The performance (or the residue) signal of the controller is measured at the
center of the tip of the beam by a laser-optical displacement sensor. The performance signal is
filtered by a high pass filter with f,=lH, to filter out the dc offset of the displacement sensor and
then amplified by an amplifier with a gain of 10.

The disturbance and control signals are generated by our dSPACE (Model DS 1005) DSP
system with 466MHz PowerPC CPU and amplified by two separate channels of an amplifier by
a same gain of 50. The types and conditions of the signals are discussed in details in the next
section. The dSPACE system has a 16-bit A/D and a 16-bit D/A board. The computer can
acquire data using Mlib/Mtrace programs in MATLAB through the dSPACE system.

The whole system was a two-input/two-output system. One input was the control signal
and the other input was the "unmeasured" disturbance signal. The two outputs are termed a
"reference output" and a "performance output". For this validation test, the reference and
performance outputs were identical. The disturbance rejection algorithm was implemented in the
Simulink environment and compiled and downloaded to the dSPACE system. The disturbance
signal was band-limited white noise with frequency of 0-150 Hz.

The disturbance rejection algorithm runs in one of the following two modes: 1) "ID, then
control" (shown in Figure 3-11): the system (control model) is identified by the
ARMARKOV/Toeplitz system ID algorithm and the identified system weight matrix B,. is
transferred to the ARMARKOV control algorithm; then the controller is turned on and the
"control signal" is switched to the controller output. 2) "ID and control" (shown in Figure 3-12):
the ID and control are turned on simultaneously. The input (UD) to the system for ID can be
either band-limited white noise or a repetitive linear chirp signal. The controller uses the
identified system to achieve maximum suppression of the vibration of the beam, subject to
constraints on the maximum allowable actuator signal. The "ID and control" mode is better
when the system is a time variant system because this mode updates the system information
during every iteration. However, the "ID and control" mode adds an additional signal u,,D to the
control signal all the time and this certainly affects the performance of the disturbance rejection
controller. The tradeoff between the adaptation ability and effects on the performance should be
kept in mind.
3.3 Results of the Vibration Control Tests

3.3.1 Computational Tests
For real-time control applications, the turnaround time (defined as the time for the

program to execute one iteration) is required to be less than the sampling time. Complex
algorithms are computationally intensive and have large turnaround time, which requires
choosing a corresponding larger sampling time (or a smaller sampling frequency f,). From the
Shannon sampling theorem, the sampling frequency must be larger than twice the highest
frequency of interest to avoid aliasing. Thus, algorithms with high computational complexity
may not be feasible in flow control applications. The tradeoff between choosing a large f, to

satisfy the sampling theorem and choosing a small f, to allow a large turnaround time must be
considered. This section analyzes the effects of varying the parameters of the ID and control
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algorithms on the computational intensity. This serves as a reference for choosing the
parameters with regard to the computational intensity.

The sampling frequency was 1024 Hz for the computational tests. In Figure 3-13 and
Figure 3-14, the turnaround time of the system ID algorithm by varying either p., n or p is
plotted, while the other two parameters are fixed at unity. It is shown that the turnaround time is
approximately linearly proportional to both p and n, while the slope for n is approximately
twice of that for .. The dependence of the turnaround time on p is approximately quadratic.
Clearly the averaging window number p has much more significant impact on the computational
intensity than the other two parameters. Figure 3-15 investigates the effects of varying p on the
computational intensity with respect to n+g.. As shown, the computational intensity is
proportional to p. From these results, it is suggested to hold p to be a small number and
increase p to improve the system ID performance.

Figure 3-16 shows the effects of varying nc or p, on the computational intensity of the

ARMARKOV disturbance rejection algorithm. The results are similar to those of the system ID
algorithm. The turnaround time is approximately linearly proportional to n, and pc while the

slope for n, is approximately twice that for g.

3.3.2 System Identification
The ARMARKOV/Toeplitz system ID algorithm requires the following three parameters:

the order of the system n, the number of Markov parameters p., and a parameter p that
determines the size of the averaging window. The SNR is also a parameter that can affect the
performance of the system ID algorithm. When the number of Markov parameters is unity, the
ARMARKOV model reduces to an ARMA model. The values of the parameters are limited by
the requirement that the turnaround time must be less the sampling time. As shown in the last
section, p. has the smallest effect on the turnaround time; thus in this section the performance of
the system ID algorithm with varying p. is compared.

The offline non-parametric fit of the frequency response of the beam system is also
implemented as a comparison and shown as green dot lines in Figure 3-20 - Figure 3-23. The
non-parametric fit uses the "invfreqz" command in MATLAB and implements a second order
approximation. The "invfreqz" command returns the system matrices A and B of the state
space representation. The zero-pole map of the non-parametric fitted system is shown in Figure
3-17. As shown, the beam system is a low damping system because it has two poles that are
very close to the unit circle. The controllability matrix is [B AB]=[l 1.655;0 1] (for a second

order system), which has full rank 2. This means that the system is controllable.
The sampling frequency was 1024 Hz. The input signal used for the system ID was a

periodic chirp signal. The frequency response shown in Figure 3-20 - Figure 3-23 was
implemented with NFFT=1024, no overlap, and a rectangular window.

Figure 3-18 shows a very good match between the measured and fitted outputs of the
system with the system ID parameters of p=n=2, p.=10 and SNR=20 dB. Meanwhile, as shown
in Figure 3-19, the weight tracks of the system ID converge at about 0.5 seconds.

Figure 3-20 to Figure 3-23 show the comparison between the measured and fitted
frequency response with the system ID parameters of p=n=2, SNR=20 dB and varying t. A
significant improvement of the system ID is obtained when p. changes from 1 (ARMA case) to
10. Figure 3-24 compares the mean square error (MSE) verse time of the system ID with
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varying lt. Surprisingly, it is found that the case with [t=]0 has the best performance. This
indicates that for the beam system, increasing the number of Markov parameters does not
necessarily improve the system ID performance. This also suggests that for a certain system,
there may exist an optimal number of Markov parameters. It is also shown in Figure 3-24 that
for the case with gt=40, the convergence rate is slower than the case with g= , although the final
MSE is better. This indicates that too many Markov parameters may be detrimental to the
performance of the ARMARKOV/Toeplitz system ID.

Figure 3-25 compares the mean square error (MSE) verse time of the system ID with

varying SNR. The SNR is computed by using the formula: SNR=l0log 10(o/O2), where a' is

the variance of the control signal and C2, is the variance of the disturbance signal. It is clear that

the system ID performs better with a higher SNR. This suggests that when the system ID is
conducted with unknown disturbance, it is better to apply a large system input within the
maximum allowable range.

3.3.3 Adaptive Disturbance Rejection
The ARMARKOV disturbance rejection algorithm requires the following three

parameters: the order of the controller n,, the number of Markov parameters of the controller [t,

and the adaptive step size constant 'y that controls the convergence rate of the controller.
The controller uses the system information identified by the ARMARKOV/Toeplitz

system ID with the parameters of p=n=2, R-=10 and SNR=20 dB (shown in Figure 3-21). All
cases of the controller design use the same identified system.

Band-limited white noise with frequency of 0 - 150 Hz and variance of 0.09 is used to
excite the disturbance piezoceramics. Figure 3-26 and Figure 3-27 show the time data of the
performance and control signals with the parameters of nc =2, 'lc= 20 and T = 1. The system ID

is off for the whole period and the controller is off initially and turned on at t = 20 sec. In Figure
3-28, the power spectra of the performance signal with control off and on are compared. The
power spectra were calculated by using the time data of 20-second duration with NFFT=1024,
50% overlap and a hanning window. The "control on" case is taken after the controller is turned

on for 30 seconds. The performance of suppression is calculated by 10glogl0 (off /G, ) and this

case gives 11.7 dB suppression. Interestingly, in Figure 3-28, the power around 70 Hz and 120
Hz of the "control on" case is higher than that of the "control off" case. This is generally defined
as spillover (Hong and Bernstein 1998). Hong and Bernstein (1998) used the Bode integral
constraint to analyze the spillover problem and concluded that the spillover is inevitable if the
reference and performance signals are collocated or the disturbance and control actuators are
collocated. For this vibration control test, the reference and performance signals are collocated,
thus the spillover is unavoidable.

Figure 3-29, Figure 3-30 and Figure 3-32 show the performance of the disturbance
rejection algorithm with varying nc, p and T, respectively, while other parameters are held

constant. From
Table 3-2 and Table 3-3, it is interesting to find that there is not much difference of the

suppression performance for varying n, and [tc. However, the step size parameter Y does play
a significant role. Larger T gives much faster convergence and better performance. However,
if Y is too large, it is possible for the controller to become unstable. This tradeoff should be
kept in mind when choosing T.
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The disturbance rejection controller can also be run at the "ID and control" mode. In this
mode, the band-limited white noise with frequency of 0 - 150 Hz and variance of 0.09 is used to
excite the disturbance piezoceramics. Meanwhile, the band-limited white noise with frequency
of 0 - 150 Hz and variance of 0.01 is added to the controller output. The control signal is shown
in Figure 3-33 and the performance signal is shown in Figure 3-34. Comparing with Figure
3-27, the control signal of the "ID and control" case is significantly larger at the beginning
because of the additive signal uID and the evolution of the controller output is "buried" under it.

Figure 3-35 compares the power spectra of the performance signal of the two different
modes. It is surprising that the "ID and control" mode results in lower power around the natural
frequency of the beam. This is hard to see in Figure 3-34 because the "ID, then control" mode
seems much better. However, it is not surprising that the "ID and control" mode results in higher
power at other frequencies than the natural frequency because of the additive signal U ID. In

addition,
Table 3-5 shows that the "ID, then control" mode gives better suppression performance

of the overall power.
Unfortunately, for this setup, it is not feasible to test the adaptability of the two modes.

However, this will be done in the wind tunnel experiments.
As a summary, the computational tests are conducted first to determine how the

parameters affect the computational complexity of the system ID and control algorithms. It is
shown that the averaging window number p has much more significant impact on the
computational intensity than the other two parameters for the system ID algorithm. The
dependence of the computational complexity vs. n is approximately twice of that for ,U.
Similarly it is found that the turnaround time of the control algorithm is approximately linearly
proportional to n, and ga, while the slope for n, is approximately twice of that for yt,.

The ARMARKOV/Toeplitz system ID algorithm successfully identifies the system
(control model) and results in very good frequency response approximations. A significant
improvement of the performance of the ARMARKOV system ID over the ARMA (when l=l)

system ID is found. However, too many Markov parameters of the ARMARKOV system ID
may be detrimental to the performance. Higher SNR improves the performance, thus when the
system ID is conducted with unknown noise, the input signal should be chosen as large as
possible within the maximum allowable level.

The order of the controller n, and the number of Markov parameters l1 do not play

significant roles on the performance of the ARMARKOV controller for this vibration control
test. However, this conclusion may vary with different systems and remains to be investigated.
The step size constant X significantly affects the convergence rate of the controller. T should
be chosen as large as possible before it makes the controller unstable. The spillover effect is
identified in this vibration control test. This effect is unavoidable because the "reference signal"
and "performance signal" are collocated (Hong and Bernstein 1998).
Table 3-1. Parameters for the simulations.

Fs (Hz) 500
Perturbation amplitude a = 0.001, 0.002, 0.005
Adaptation gain k= l/a 2

Perturbation frequency ( Hz) w = 30, 40, 50
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High pass filter cutoff frequency (Hz) Wh= 10

Low pass filter cutoff frequency (Hz) w1=10

Table 3-2. Suppression performance of the disturbance rejection algorithm with Kac =20, r = 0.1

and varying n,.

K =20, T = 0.1 n,=I nc=5 nc=10

Suppression (dB) 8.9 8.6 9.0

Table 3-3. Suppression performance of the disturbance rejection algorithm with n, = 2, T = 0.1

and varying #.t

nc =2, T = 0.1 pC= 1  =20 p, =40

Suppression (dB) 8.4 8.7 7.9

Table 3-4. Suppression performance of the disturbance rejection algorithm with n,=2, p,=20

and varying T.

n, =2, p.c =20 T = 0.01 T = 0.1 T=1

Suppression (dB) 3.9 8.9 11.7

Table 3-5. Suppression performance of the disturbance rejection algorithm at different modes
with n, =2, g, =20 and T = 0.1.

n, =2, p, =20 and T = 0.1 ID, then control ID and control

Suppression (dB) 7.1525 4.9994
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4 Experimental Setup and Data Analysis Method

The separation control experiments are conducted in an open-return low-speed wind
tunnel with a 30.48 cm (1 ft) by 30.48 cm test section. The wind tunnel has two anti-turbulence
screens, an aluminum honeycomb and a 9:1 contraction ratio. The airspeed is controlled by the
variable frequency of the motor fan.

A two-dimensional NACA 0025 airfoil that is equipped with synthetic jet actuators,
Kulite dynamic pressure transducers and a lift/drag balance is used as the test model. A Particle
Image Velocimetry (PIV) system is used for flow visualization and quantitative flow field
measurements. A Dantec CTA hot wire system is used to measure instantaneous velocity.

This chapter describes each part of the experimental setup in detail. A brief description
of the Higher Order Statistical Analysis (HOSA) is also presented in this chapter because it may
be used for nonlinear flow instability analysis.
4.1 NACA 0025 Airfoil Model

A two-dimensional NACA 0025 airfoil with chord length of 15.24 cm (6 in.) is built as a
test bed for flow separation control (Figure 4-1). The span of the airfoil model is 29.21 cm (11.5
in.), which allows for a slight gap on either end to accommodate a sidewall-mounted strain-
gauge sting balance. The boundary layer is tripped at the leading edge region using No. 60 sand
grit. Two pairs of synthetic jets are embedded in the airfoil at approximately 3% chord and 30%
chord, respectively. Six ports near the rear of the airfoil at the mid-span location are available
for dynamic pressure transducers. The six ports are located at approximately 44.0%, 52.5%,
61.0%, 69.5%, 77.9% and 86.4% chord. A pre-amplifier PCB board for the dynamic pressure
transducers can be also installed in the airfoil. The detailed side view of the airfoil is shown in
Figure 4-1.
4.2 Synthetic Jet Actuators

The airfoil is fitted with two pairs of synthetic jet arrays (each with 0.5 mm wide slots
separated by 2.4 mm), which are located in the central 1/3 rd spanwise region of the airfoil (see
Figure 4-1). The first pair is located near the leading edge of the airfoil, at approximately 3%
chord, while the second is placed near the point of maximum thickness at about 30% chord. The
first array is fixed, while the second array can be translated between 25% chord and 37% chord.
The detailed design procedures of the synthetic jet actuators that are used in this research can be
found in Gallas et al. (2003) and Gallas (2005). The primary goal of the design is to maximize
the magnitude of the volume flow rate through the orifice per applied voltage (i.e. IQ..,/V.I,
where Q.,, is the volume flow rate and Va is the applied ac voltage) over a frequency range of

O(kHz), while the size of the synthetic jet actuators are limited by the geometry of the airfoil.

As mentioned, the frequency response of the synthetic jet actuators is another important design
criterion. The frequency response of the actuators must be chosen appropriately to effectively
control (via amplitude and burst modulation techniques) the flow separation over a range of
frequencies, ranging from the low frequency shedding in the wake to the high frequency shear
layer instability. The side and top views of the synthetic jet actuators are shown in Figure 4-3.
The cavity is 151 mm long, 28 mm high and 2 mm wide. Five piezoceramic disks are attached
to one side of the cavity. They are driven in phase using a single amplified drive signal to
achieve maximum flow rate. A thin slot (0.5 mm wide by 101.6 mm long) at the top of the
cavity permits oscillatory fluid flow. Two closely spaced synthetic jets are obtained by
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introducing a rigid wall to separate them, as shown in Figure 4-3. The two synthetic jet actuators
are nominally identical. See the detailed characterization of the actuators in 0.
4.3 Experimental Methods

4.3.1 Flow Visualization
Flow field velocity data over the surface of the airfoil and in the wake are acquired using

Particle Image Velocimetry (PIV). The PIV system consists of a pair of New Wave Minilase 15
Hz, 50 mJ per pulse, Nd:YAG lasers with appropriate light sheet optics. The width of the light
sheet is approximately 1-2 mm at the plane of measurement. A TSI model 630157 Powerview
Plus 2MP 10-bit CCD camera is used to acquire images. This camera contains 1600 x 1200, 7.4
pm square pixels. A series of Nikon lenses (60 mm, 75-240 mm, 200 mm) are available. The
flow is seeded with water-based fog fluid by a LeMaitre G150 seeder and the seeding density is
adjusted to insure uniform seeding density.

The laser pulse generator and the camera are synchronized by a TSI Model 610032
Synchronizer which is configured to acquire a pair of images using TSI INSIGHT Software
version 6.1.1. The computation of the velocity field begins by dividing the image into a grid of
interrogation windows overlapped in space by 50%. These windows typically range from 32 x
32 pixels to 64 x 64 pixels. The velocity is determined by the known distance that a particle is
displaced during the known time dT. The INSIGHT Software utilizes an FFIT cross-correlation
process in conjunction with a Gaussian peak search algorithm to calculate the average velocity of
the particles in the interrogation widow. A number of validation schemes are available in the
software, such as range outlier rejection and median filtering.

4.3.2 Lift/Drag Balance
A strain-gauge balance is designed to measure lift and drag forces of the airfoil test bed.

The detailed design procedure can be found in Griffin (2003). Two pairs of strain gauges are
attached to the cantilever that supports the airfoil to measure the normal and axial forces on the
airfoil, respectively (Figure 4-4). The layout of the strain gauges and Wheatstone bridge
configuration are shown in Figure 4-5 and Figure 4-6. The output of the Wheatstone can be
calculated by the following equation

V'ARvV AR, (81)V.=R

From the above equation, we can see that the output is linearly dependant on the change
of resistance AR.

The output of the strain gauges is measured by a high-resolution HP34970A DAQ system
and is averaged over 2 power line cycles to eliminate 60 Hz noise. The lift and drag are
calculated from the normal and axial forces together with the angle of attack (Figure 4-4) via the
following equations:

L=Ncos(AOA)-Asin(AOA) (82)

D=Nsin(AOA)+Acos(AOA) (83)

where L and D stand for lift and drag, respectively, while N and A stand for normal and axial
force, respectively.

Before the balance can be used for the wind tunnel experiments, it is calibrated by adding
known weights on the balance and measuring the output from the normal and axial strain gauges.
Figure 4-7 and Figure 4-8 show typical normal and axial force calibrations vs. balance output.
Very good linear relationships between the balance output and the forces on the balance are
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achieved. The coefficients of the linear equations are used to back out the forces on the airfoil
from the voltage output of the strain gauges.

The balance is also validated by comparing with the lift and pressure drag coefficients
measured by integrating the static pressure around the airfoil. The pressure taps are located at
the center span of the airfoil and the static pressure is measured via a Heise static pressure gauge.
Figure 4-9 shows the static pressure distributions on the airfoil surface at different AOAs when

Re = 150,000. From Figure 4-9, it can been identified that the flow is separated at AOA= I5'

and 200. The suction zones on the upper surface shrink dramatically. This is generally referred
to as pressure loss due to flow separation and is primarily responsible for deteriorating lift to
drag ratio.

The lift and drag coefficients are calculated by integrating the static pressure around the
airfoil surface, assuming surface friction is negligible compared with pressure forces and the
flow is two-dimensional. Figure 4-10 and Figure 4-11 show the comparison of the lift and drag
coefficients calculated by the two different methods at Re=100,000 and Re = 150,000. The

uncertainty was calculated at %95 confidence interval (i.e. uncertainty = 2-, where a is

standard deviation and N is number of measurements). As shown, they agree reasonably well
considering measurement uncertainties. This validates that the balance works as desired. The
main reason for the differences is the three-dimensional effect as the pressure taps only measure
at the center span.

4.3.3 Dynamic Pressure Transducers
To measure the pressure fluctuation on the airfoil surface, it is required that the pressure

sensors must be compact so that they can be installed within the limited space in the airfoil. It is
also desired that they have large enough bandwidth to capture the characteristics of the
oscillations of the flow above the airfoil, and their response is linear with respect to the pressure
load within the range of interest. For these reasons, a number of commercially available MEMS
Kulite LQ125-5A dynamic pressure transducers (Figure 4-12) are used to obtain dynamic
pressure response on the upper surface of the airfoil. The transducers can be flush mounted in
the six available locations on the upper surface. A pre-amplifier/filter board for the transducers
is designed to eliminate dc response (fcutoff =1.5 Hz ) and amplify the outputs by a gain of 100.

The pre-amplifier/filter board can be installed inside the airfoil so that the airfoil acts like an
electronic enclosure. Before the transducers can be used in the experiments, they are
dynamically calibrated in a 2.54 cm (1 in.) by 2.54 cm plane wave tube (PWT). A speaker was
used as a source, and a BrOel & Kjer (Model 4318) microphone was used as a reference
transducer. Figure 4-14 shows the linear response of a typical Kulite sensor that is obtained by
fixing the frequency and increasing the input amplitude of the speaker. The frequency response
is measured using a periodic chirp signal (Figure 4-14). As shown, the frequency response does
not vary up to approximately 3000 Hz, which is sufficient for this research.

4.3.4 Hot Wire Anemometry
A Dantec constant-temperature hot wire anemometry system (CTA module 90C10) is

used to measure time-resolved velocity in the unseparated flow above the airfoil. The CTA
system includes A/D converter and all the signal conditioners needed. Before the measurements,
a static calibration is performed by the calibration module and the flow unit (90H01 and 90H02).
A typical calibration curve is shown in Figure 4-15. Since the output of the hot wire system
usually drifts due to temperature changes, connections, etc, the calibration should be done before
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each measurement. Two algorithms are commonly used for curve fitting. One is a polynomial

that is used here, and the other is King's law (power law): U=(E2-A)/B)"n, where E is the

voltage output of the hot wire and U is the flow velocity (Jorgensen 1996). The difference
between the temperatures at calibration and measurements should also be corrected by means of

Tc-TT "T . where Tw is the wire temperature, To is the temperature at calibration,

E, is the raw wire voltage, T is the temperature during measurement and E, . is the corrected

voltage (Jorgensen 1996). During experiments, the hot wire probe (55P1 1) is mounted on a 2-
dimensional Velmex traversing system which has spatial resolution of about 1.6[tm/step in both
directions.
4.4 Control System Hardware and Software

The control systems for the separation control experiments are implemented by a
dSPACE (Model DS1005) DSP system with a 466MHz PowerPC CPU. The dSPACE system
has a 5-channel 16-bit A/D board (DS2001) and a 6-channel 16-bit D/A board (DS2102) as the
data acquisition equipments. The range of the data acquisition boards can only be -10 to +10 V,
0 to 10 V or -5 to +5V. The control algorithms are first programmed in Matlab/Simulink and C
programs (c-mex sfunction) and then compiled and downloaded to the dSPACE system. The
compiled programs together with the data acquisition boards are able to run the experiments in
real time. The computer is also able to acquire data into Matlab's workspace through the
dSPACE system via the m-lib programs provided by the dSPACE.
4.5 Higher Order Statistical Analysis (HOSA)

Higher order spectral analysis is used to uncover the nonlinear interactions in signals or
to identify nonlinear systems (Nikias and Mendel 1993). As discussed in Error! Reference
source not found., there are three characteristic frequencies and nonlinear interactions between
them are inherent in separated flow. Unfortunately, the power spectrum alone is incapable of
providing any conclusive proof of the nonlinear interactions. The power spectrum only provides
proof of presence of power at certain frequencies. On the other hand, higher-order spectral
method can quantify quadratic coupling between frequency pairs. For example, it can provide
the information that the generation of power at a certain frequency is the result of quadratic
coupling of other frequencies. The auto-bispectrum uses third order cumulants and is defined as

B,,x,,(fi,f- )=limlIE[X (fi)X(fj)X* (fiJIr-+fj)] (84)

and the auto-bicoherence is defined as

X (f. f )= P(f)PX (fi +fj(85)

where X(f) denotes the Fourier transform of x(t), * denotes the complex conjugate and

P,x (f) denotes the auto-spectrum of x (t).

The auto-bicoherence is bounded by zero and unity. Disturbances with frequencies fi, fi

and fi+f are quadratically coupled if b2 (fi,fj)=l, not quadratically coupled if b2 (f,,fj)=0 and

partially coupled if 0<b2 (f,f0) <1.
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Just as the auto-spectrum has the cross-spectrum as its counterpart for signals x (t) and

y (t), the auto-bispectrum has the cross-bispectrum as its counterpart, which is defined as:

Bxxy (fi,fJ) = lim I[X (fi )X (fj) Y * (fi +fj)] (86)
T- TL

Similarly, the cross-coherence is obtained by normalizing the cross-bispectrum and
defined as follows:

Bxxy (fi'fJ)
xxy (fif) = PX (fI)P (fj)Pyy (fi +fj) (87)
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Figure 4-1. NACA 0025 airfoil model with actuators and pressure transducers installed.
(Adapted from Holman et al. 2003)

U

shed vortex pairs

((__ Time-

slot heigh: (1), Instanta Time-

I I- so
slot depth

Caivity cavityI driver amplude4
------------------------ ---------

oscillating driver oscillating driver

Figure 4-2. Schematic of a synthetic jet actuator.
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Figure 4-3. Synthetic jet array. (Adapted from Holman et al. 2003)
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Figure 4-7. Normal force vs. balance output

Error! Objects cannot be created from editing field codes.
Figur, Axial force vs. balance output

7;

0

68



AOA, 0. AOA 5

-1--05 .e
o
- - - . e

Upper sufacepLOX surface
a- . Lovas, surface . L- surface

-41

0-5 2 05 0

r0

0,2"

0 0

o10 20 30 40 50 60 70 o 90 100 0 10 20 30 40 0 70 80 90 100

x1cc x/C

A0A -10- ACA= -IS
-25.--- - - - - - - - -

1.4tsuor ontae 1; f c alfmAr
I - s r LoqweLwlwa69

-1 5 . 4 ;

'-024 0

.- 'J

0 0 0 30 4 5 6 0 0 80 0 0 2 3 4 0 070 00 0 100

.ic (%) ./c M%)

AOA. 20-

Lipperwloace

-051

05' 0 1

.

.~ 0 20 0 0 0 60 70 80 go 1o0
x/c (%)
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Figure 4-12. Picture of a Kulite transducer.

Error! Objects cannot be created from editing field codes.
Figure 4-13. Linear response (at 500Hz) of a typical Kulite transducer.
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Figure, o Frequency response of a typical Kulite transducer.
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5 Results and Discussion

The experimental results of the dynamic feedback control and nonlinear control
approaches are presented in two parts.
5.1 Dynamic Feedback Control

5.1.1 Experimental Configuration
Figure 5-1 shows the complete experimental configuration. The system ID and control

algorithms run on the dSPACE controller system in real-time (-4 KHz). The controller
generates control signal that is amplified by an amplifier. The pressure fluctuation signals
measured by Kulite sensors are amplified and filtered before sending to the dSPACE controller.

5.1.2 System Identification
5.1.2.1 Coherent flow structures

Unlike POD-based approaches (Holmes et al. 1998; Tadmor et al. 2007; Ausseur et al.
2007), the unsteady surface pressure signals are used exclusive of the velocity field for feedback
in this research. Although system ID and POD-based methods of modeling the flow are
different, they all attempt to capture the signature of the separated flow - the coherent flow
structures. In this section, we show that the surface pressure signals indeed represent the
footprint of the coherent flow structures.

The following experiment is devised to show this. A continuous pulse train (repetition
rate at 1 Hz and amplitude at 50 V) is fed to the actuator Al at Re=120,000. The pressure
signals are phase averaged relative to the pulse signal. Four thousand averages are taken to
obtain the statistically converged pressure signal profiles. As shown in Figure 5-2, a vortex
(produced by the actuator pulse) propagates downstream indicated by the surface pressure
fluctuations. The vortex reaches the sensor S1 first and then S2 ... S6. After the vortex passes
by, the averaged surface pressure fluctuating approaches zero. This is because the random
pressure fluctuations that are not correlated with the pulse input from the actuator possess
random phase and are averaged out. The convective velocity is much slower than the free stream
velocity, with a nominal lifetime of more than 5 airfoil chord lengths. With the link between the
flow structure and the surface pressure clearly established, the goal of the system ID approach is
to correlate the actuator input and the corresponding surface pressure fluctuations and utilize the
relationship to model the coherent flow structure with linear dynamical equations.

5.1.2.2 Linear prediction
The control approach is based on the assumption that the coherent flow structures may be

modeled by linear dynamical equations. This section demonstrates that the linear model is
capable of predicting the downstream evolution of the flow dynamics (measured by the pressure
sensors) subject to the actuation upstream (provided by the ZNMF actuators). In fact, previous
studies in turbulent boundary layer (Rathnasingham and Breuer 2003) and cavity flows
(Cattafesta et al. 1999) have suggested that linear approximations can reasonably predict
inherently nonlinear flow structures.

The system ID algorithm is applied first to demonstrate this. The computational
requirements are demanding for both the system ID and control algorithms. When implementing
the algorithms, the algorithm parameters were chosen due to hardware limitations and were not
optimized. The sampling frequency is chosen to be 4096 Hz. In Figure 5-3, z denotes the
pressure signal measured by the #6 pressure sensor shown in Figure 5-1 subject to a band-limited
random input provided to actuator AI. Using the input and z, one can fit a model to represent
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the flow structures using the approach described in earlier sections. One should be aware that
this model actually includes actuator and sensor dynamics and other hardware in the loop, e.g.
amplifiers and filters. Here, Error! Objects cannot be created from editing field codes, in
Figure 5-3 is the estimated Error! Objects cannot be created from editing field codes. using
the model mentioned above, and the data show a reasonable match over a range of time or
frequency scales. The errors are primarily due to the random turbulent structures that are
uncorrelated with the actuator input, and they cannot be modeled by the system ID algorithm.

An indication of the convergence of the system ID to the actual flow model is the

expected value of the Mean Squared Error (MSE), which is defined as MSE=E[[z(k)-i(k)]2].

As shown in Figure 5-4, at the beginning the MSE has a relatively large value. This is because
the model parameters are initialized to zero. Then the model parameters are trained by the
ARMARKOV system ID algorithm targeting the objective of minimizing the error.

5.1.2.3 Frequency response and the performance of system ID
To further evaluate the performance of system ID approach, we compare the frequency

response of the flow system determined using conventional FFT methods for single-input/single-
output systems described in Chapter 6 of Bendat and Piersol (2000) with that determined using
the converged ARMARKOV system ID model parameters. When computing the frequency
response, the parameters are f,=4096 Hz, NFFT=1024, 75% overlap, a Hanning window and
320 effective averages.

Figure 5-5 shows that the system ID does not perfectly match the frequency response, but
it does capture the essential characteristics over a broad frequency range. It is also clear that the
coherence between the input and output is close to zero at frequencies less than 600 Hz, which is
a characteristic of the present piezoelectric zero-net mass flux actuators, which posses a
resonance near 1200 Hz (Holman et al. 2003). The low coherence renders the FFT-based
frequency response estimate uncertain and highlights the difficulty of designing a control system
using classical frequency domain approaches.

5.1.2.4 Acoustic contamination
In all of the discussions above, we have ignored an important potential issue related to

acoustic contamination. It is well known that zero-net mass flux actuators can produce
significant sound. In the present control problem, the pressure sensors are intended to capture
the hydrodynamics of the coherent flow structures. However, as demonstrated by Figure 5-6, the
pressure sensors do not discriminate between acoustic and hydrodynamic pressure fluctuations.
Since the pressure measurements contain both components, the disturbance rejection control
algorithm will try to suppress the acoustic power as well as the hydrodynamic power, possibly
resulting in an undesirable reduction in the actuator amplitude. Furthermore, from a control
standpoint, the acoustic and hydrodynamic paths have significantly different propagation speeds,
leading to significant phase lag differences and an unstable controller.

One way to address this problem is to estimate a frequency-wavenumber spectrum using
Fourier-based methods, but such a method is not amenable to a real-time control system. A
second approach, adopted here, incorporates a digital filter to predict and remove the acoustic
signal. We design this digital filter using the same system ID method described in the earlier
section, i.e. using the system ID method to predict the acoustic signal with the actuators on and
the flow off and then subtracting the computed acoustic component from the sensor
measurement with both the actuators and flow on (see Figure 5-6). The ID parameters were p=1,
n=100, =l. Note this filter has much higher order than that used in Figure 5-3. However, this
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will not add significant computational intensity because after the filer is designed by the system
ID algorithm the filter parameters are fixed during the closed-loop control. Figure 5-7 shows a
comparison between the actual measured acoustic noise with wind tunnel off and the predicted
acoustic noise by the digital filter. Good agreement is achieved. To test this digital filter further,
we used the same digital filter in Figure 5-7 but reduced the actuator amplitude by 50%. Figure
5-8 shows the digital filter works well when the input signal is changed, indicating the linear
behavior of the acoustic signal produced by the actuator for typical excitation levels used in the
experiment.

Next, the digital filter is applied to the measurements with the wind tunnel running.
Figure 5-9 shows the power spectra comparison of the pressure measurements before and after
applying the digital filter for a system ID case. The power spectrum with the digital filter
applied clearly shows lower power at the frequency band 500 Hz to 1500 Hz, where the
piezoelectric actuator generates most of its acoustic noise due to the actuator resonance as
indicated in Figure 5-6. The digital filter is thus able to mitigate the acoustic noise component
and is used for all results presented below.

5.1.3 Disturbance Rejection
5.1.3.1 Closed-loop control

As described earlier, the disturbance rejection algorithm requires both reference (used for
feedback) and performance signal measurements. As described earlier, the goal of the algorithm
is to minimize the fluctuations of the performance signal. According to Venugopal and
Bernstein (2000), the reference and performance signals can be the same. Herein, different
reference and performance transducer combinations are tested for comparison. Since SI is the
closest to the leading edge and S6 is the closest to the trailing edge, it is reasonable to investigate
the extremes shown in Table 5-1.

The disturbance rejection algorithm is applied to all four cases and the ID and controller
parameters are summarized in

Case Reference Performance CL CD L/D

# transducer y transducer z
Baseline - 0.21 ± 0.02 0.21 ± 0.09 1.01 ± 0.08

1 S1 S1 0.84 ± 0.01 0.12 _ 6.97 ± 0.37
0.01

2 S6 S6 0.83 ± 0.01 0.12 ± 0.01 7.21 ± 0.46
3 SI S6 0.84 ± 0.01 0.12 ± 0.01 7.11 ± 0.40
4 S6 S1 0.84 ± 0.01 0.12 ± 0.01 7.09 ± 0.43

Table 5-2. Note that higher values increase the number of adjustable parameters in the
system ID and the controller, which may increase performance. However, this is not guaranteed.

First, to make sure the control is inducing a global effect, we examine the lift/drag
performance that is the aerodynamic objective of the separation control system. The control
objective is to attach the separated flow and thereby reduce the fluctuating pressure spectrum
associated with the convection of the vertical structures over the airfoil surface. The lift and drag
are measured after the closed-loop control algorithm converges by the balance, which is only
capable of providing mean or time-averaged data. The lift-to-drag ratios for all the cases are also
summarized in Table 5-1 and include uncertainty estimates that account for calibration and
random errors (Tian 2007). All four closed-loop control cases give similar LAD improvement,
- 7x L/D of the uncontrolled baseline case. Note that the lift is increased while the drag is
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decreased. Close inspection via tuft and smoke flow visualization reveals that, in all 4 cases, the
controller is able to fully attach the separated flow. Since the four closed-loop control cases give
the same LD within experimental uncertainty, this indicates that the choice of the performance
and reference sensor locations does not have a significant impact on the integrated lift/drag
performance for this flow condition. In the following sections, we choose to study case #2 using
S6 more closely.

5.1.3.2 Effect of control on surface pressure signals
Recall that we use the actuator and surface pressure signals to model the plant dynamics,

and the disturbance rejection algorithm attempts to suppress the surface pressure spectra. Figure
5-10 shows the time traces of the performance surface pressure (measured by S6) and control
input signals for case #2 before and after the control is turned on. The results clearly show that
before the closed-loop control is initiated, the performance pressure signal has relatively large
amplitude. After the ID and control is initiated from a zero initial condition for all parameters,
the performance pressure signal starts to decrease driven by the control input from the ZNMF
actuators generated by the disturbance rejection algorithm. The entire process takes
approximately 79 convective time scales to learn the dynamics and optimize the controller.
After a steady state is achieved, the pressure signal stays at the lower level corresponding to an
attached low oscillation flow, as will be shown in the next section.

Figure 5-11 shows the comparison of the power spectra for baseline and case #2
measured by the performance transducer S6. For the closed-loop control case, the power spectra
are based on the surface pressure signal after the disturbance rejection algorithm converges. The
noise floor of the transducer is also plotted for comparison to verify that the pressure signals for
all cases are well above the noise floor. Figure 5-11 clearly shows that the disturbance rejection
algorithm is able to lower the spectrum of the surface pressure signal compared with the baseline
case at all frequencies.

5.1.3.3 Quantitative flow visualization
Preliminary experimentation shows that Al and A2 give similar results but A3 and A4

are ineffective because they are located downstream of the separation location. Thus, the results
with Al are studied closed. Normalized streamwise velocity and vorticity contours (obtained
using 500 PIV image pairs) over the airfoil for the baseline and closed-loop control case #2 are
shown in Figure 5-12 and Figure 5-13. For the closed-loop control case, the images are taken
after the disturbance rejection algorithm converges. The actuator A l and pressure sensors S 1 -
S6 are shown as circles on the airfoil surface. For the baseline case in Figure 5-12 (a), the flow
separates from the leading edge just downstream of actuator Al and all six pressure sensors are
located inside the separated region. Instantaneous PIV data reveal that the separated flow
features large coherent vortices sweeping over the airfoil upper surface, which results in highly
unsteady pressure signals on the airfoil upper surface. The disturbance rejection algorithm
"senses" the pressure fluctuations and generates actuation signals to negate the pressure
fluctuations. This process ultimately organizes the unsteady flow into an attached turbulent flow
in a closed-loop (smart) fashion. As shown in Figure 5-12 (b), the flow is fully attached for the
closed-loop control case. This may explain why the four cases in Table 5-1 result in similar
lift/drag performance, i.e. they share similar information about the flow before and after the
closed-loop control is initiated.

5.1.3.4 Control input
In order to gain physical insight into the actuator control signal that the disturbance

rejection algorithm generates to attach the flow, we examine the input voltage power as well as
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the corresponding input electrical power to the actuator Al. The first quantity has units of V2,

while the second quantity has an SI unit of W. Note that these two quantities are different
because piezoelectric actuators are capacitive devices that draw higher current as frequency is
increased by virtue of the derivative operation, i=CdV/dt, where C denotes the capacitance of
the piezoelectric actuators. The electrical power is calculated by multiplying the input voltage
by the current of the actuator. The current is measured by a stand-alone current probe (Tektronix
TCP A300).

The voltage and rms electrical power spectra are shown in Figure 5-14. The total rms
electrical power sums up to 12.7 mW. It is clear from Figure 5-14 (a) that the disturbance
rejection algorithm generates a broadband control input to the actuator with spectral peaks in
both the low (20 Hz - 80 Hz) and the high (around I kHz) frequency ranges. The emphasis at
low frequencies is due to the larger scale coherent flow structures described earlier, while the
emphasis at higher frequencies corresponds to the smaller scale shear layer structures. More
detailed discussions on the two types of flow structures can be found in Tian et al. (2006) and
Wu et al. (1998). Since the flow is most receptive at these inherent frequency scales, the
disturbance rejection algorithm attempts to utilize the two characteristic frequency scales by
energy addition at these frequencies.

On the other hand, actuator characterization experiments reveal that the actuator produces
very small output at low frequencies (< 500 Hz) (Tian et al. 2006). This is clear from Figure 5-5
and may be deduced from Figure 5-14 (b). The electrical power is concentrated at higher
frequencies near the actuator resonance (than the voltage signal power) while remaining almost
flat at low frequencies. This implies that although the controller attempts to control the low and
high frequency instabilities associated with the wake and shear layer, respectively, the dynamic
response of the actuator significantly influences the control system dynamics. It is important to
recall that the "plant" includes the actuator.

Inspection of Figure 5-14 also brings into question whether the voltage power should be
used as a penalty function. The electrical power may be a better choice for the penalty function
since it reflects the actual power consumption by the actuator. Such questions must await future
studies.

5.1.3.5 Discussion
To examine how the adaptive controller performs under different flow conditions, the

angle of attack is varied continuously from 120 to 200, with a fixed free stream Re of 120,000.
The lift-to-drag ratios for the baseline and controlled cases are plotted in Figure 5-15. Clearly,
the baseline flow separates starting from 120. The adaptive controller gives the best performance
at AoA=120. The performance deteriorates as AoA increases. The improvement in lift-to-drag
ratio becomes very small at AoA=20', which means the controller is ineffective at this AoA.

The comparison of the power spectra for baseline and case #2 measured by the
performance transducer S6 is shown in Figure 5-16. It is clear that unlike the 120 counterpart
(shown in Figure 5-11), the power spectrum of the closed-loop control case is higher than that of
the baseline case. This defeats the purpose of the closed-loop controller and therefore makes the
controller ineffective. The key question is why the pressure spectral characteristics look
conversely different at different AoAs. Our hypothesis is that the flow can only be partially
attached at higher AoA in the mean sense. Instantaneously the partially attached flow contains
highly unsteady flow vortices that cause the increase in the pressure spectra.

Possible solutions include using alternate surface sensors, such as MEMS-based direct
shear stress sensors for feedback instead of pressure sensors. This can also solve the acoustic
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contamination issue. However, we believe that the key limitation of the present scheme, as
evidenced by its failure at higher angles of attack, include the assumption of linearity in the
system identification and disturbance rejection algorithm. The nonlinearity, especially in the
partially attached unsteady flow, has strong impact on the performance of the closed-loop
controller.

Future improvements to the current approach include exploration of nonlinear control
methods, which is the subject of the next section. By using the modulated signals as input (Tian
et al. 2006), the nonlinear interactions in the unsteady flow is promoted. On the other hand,
nonlinear dynamical approaches are desirable compared to the quasi-static approach in our
companion study. The nonlinear system identification algorithms are demonstrated in
simulations by Pillarisetti and Cattafesta (2001). Future direction includes implementing a
nonlinear dynamical system identification and control scheme in the wind tunnel experiments.
5.2 Nonlinear Control

5.2.1 Experimental Configuration
As shown in Figure 5-17, dual-timing control loops are configured to implement the

optimization algorithms (described in the next section). The first loop synchronously controls
the actuators and measures the low-pass filtered and amplified balance signal, while the second
loop averages the balance output and performs optimization in an asynchronous fashion. The
second loop acts as a supervisory controller that updates the control parameters in the first loop.
The sampling rate of the first loop is 40 kHz, while the second loop runs on a host PC at O(Hz).
The optimization algorithm is programmed in Matlab and communicates directly with the
dSPACE system to adjust the actuator signal parameters.

5.2.2 Flow Instabilities
In the present flow conditions (AoA= 20' and Re, = 120,000), the baseline uncontrolled

flow is massively separated and does not reattached before the trailing edge (i.e. post stall). As
mentioned earlier, this type of post-stall flow is characterized by leading-edge shear layer rollup
and vortex shedding in the wake (Wu et al. 1998). These two types of flow structures are clearly
visible in the instantaneous snapshot of the flow shown in Figure 5-18. The shear layer rollup
structures in the left figure have a much smaller length scale than the vortex shedding structures
in the wake shown in the right figure.

To characterize the velocity fluctuations in the two flow structures, a hot-wire
anemometer is used. The hot-wire is traversed vertically across the shear layer (near the

separation point) and the wake vortices (1 chord aft of the trailing edge). The maximal u,

location in the attached sub-regions is then determined at the two streamwise locations. Figure
5-19 shows a plot of the power spectral density (PSD) of the wake and the shear layer at the
respective peak rms locations. The PSD was estimated using a 4096 point FFT, a Hanning
window with 75% overlap, and 320 effective blocks. The plots zoom in on two interesting

regions. The left plot clearly shows the dominant wake frequency f, - 40 Hz. The right plot

shows the much higher shear layer frequency at fSL -2040 Hz. The plot also provides evidence

for the nonlinear coupling between the shear layer and wake instabilities via the presence of the

shear layer frequency fSL and the sum/difference frequencies fSL±fwake. Note that fSL is much

higher than f.., in accordance with classical scaling arguments that fSL-U/O,sep and

fwa, -U /W.a,. Based on the definition F+=fc/U-, f=fSL gives F'-O(30) and f=f,w,, give

F'-0(0.6). This evidence supports our hypothesis that more than a single characteristic
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frequency exists, perhaps explaining the wide range of effective forcing frequencies reported in
the literature.

To study our hypothesis about the nonlinear quadratic coupling between the instabilities,
higher-order spectral analysis of the same velocity data in Figure 5-19 is performed (Nikias and
Petropulu 1993). The auto-bicoherence contour plot shown in Figure 5-20 is bound between 0
and I and is only nonzero due to nonlinear quadratic phase coupling (lock-on). The auto-
bicoherence thus quantifies the fraction of power in a random signal as a function of triad
between two frequency components f1, f2 and their sum or difference f,±f2 . A close inspection

of the contour plot reveals distinct features at f2=f. (in particular near fSL/ 2 ,fS,I.5fst . ) 9 f 2 =fSL

and f2=fsL-f (in particular between fSL and 1.5fSL), and especially along the lines f,+f2=fsl and

fI+f 2 =fSL -f,. These data conclusively show the presence of nonlinear quadratic coupling

between the Kelvin-Helmholtz and wake instabilities.
5.2.3 Actuator Calibration

5.2.3.1 Frequency response
ZNMF actuator dynamics is a critical issue for the control of a separated flow. A typical

ZNMF device contains a cavity and a vibrating diaphragm to drive oscillatory flow through a
small orifice on the cavity. The synthetic jet represents a coupled electro-mechanical-acoustic
system with frequency dependent properties determined by device dimensions and material
properties (Gallas et al. 2003). Gallas et al. use the lumped element modeling approach to model
these actuators. In this research, although modeling our ZNMF devices is not needed, we do
need to characterize the frequency response of the actuator Al (that is used in this research).
Since the ZNMF actuator is an inherently nonlinear device, the traditional approach that uses a
swept sine as an input signal is not appropriate. Instead, a single sine wave is used as input, and
the anemometer signal is recorded. The frequency is then increased in a loop, while the forcing
amplitude is held constant. Figure 5-21 shows the rms velocity per input voltage in the
frequency band from 500 Hz to 2500 Hz. Three different input levels are used. The peak output
occurs at approximately 1200 Hz, and significant output is apparently limited to a bandwidth of
500-1500 Hz. The output level is very low for frequencies less than 500 Hz and larger than 1500
Hz. This precludes the possibility of directly forcing either the low-frequency (-40 Hz) wake or
high frequency (-2020 Hz) shear layer instabilities via sinusoidal excitation. It also highlights
the preferential output of the actuator near its resonance frequency. Furthermore, the nonlinear
nature of the actuators is revealed, since the frequency response function is not independent of
the input voltage. (If the actuator were linear, these curves would collapse.) However, that is
this nonlinear behavior that is leveraged to enable forcing at low and high frequencies, as
explained below.

5.2.3.2 Types of actuation waveforms
Three typical multi-modal waveforms are studied to take advantage of the multiple

instabilities of a separated flow. They are shown in Figure 5-22: (a) amplitude, (b) burst and (c)
pulse modulation. In (a) and (b), the lower plot in the figure is the result of a point-by-point
product of the top two waveforms. Such forcing is, in general, a modulation of a (usually) high
frequency carrier signal, (e.g., a sine wave with frequency f,) by a low frequency modulation

signal (either a sine wave or square pulse with frequency f.). In addition, a parameter A is

multiplied to determine the amplitude. For the BM signal, there is an additional parameter, the
duty cycle, which determines how many sine wave periods occur in each burst. In this research,
the duty cycle is adjusted such that only one period occurs in each burst. The last case in part (c)
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is a pulse train, which can be interpreted as the modulation of a constant signal by square pulse.
Similar to the BM signal, the duty cycle can be an additional parameter. In this research, it is
kept to be the shortest achievable width on the dSPACE control, i.e. one discrete sample At. In
this case, there is only one waveform parameter fm to vary. As one moves from amplitude to
burst to pulse modulation, the modulation process results in an increasingly rich signal spectrum
with broader spectral content, which improves the likelihood that the excitation waveform will
excite an inherent instability. Furthermore, the required actuator power reduces as will be shown
in the following section.

Next we study the output of the actuator subject to the AM waveform excitation as an
example. Figure 5-23 shows the velocity output of the ZNMF actuator A l measured by the hot-
wire anemometry subject to an AM excitation, where A= 50 Vpp (peak-to-peak voltage), fr =50

Hz and f= 1180 Hz. The wire was placed at a sufficient distance (--lmm) above the actuator

slot so that there is no reverse flow occurs and, hence, no signal rectification is needed. The
temporal record shown in (a) clearly shows the low frequency oscillations at 50 Hz and the high
frequency oscillations at 1180 Hz. The corresponding power spectral density of the velocity
signal shown in (b) reveals that the high power is at the low modulation frequency 50 Hz while
the second highest power is at the high carrier frequency, with additional harmonic distortion
peaks. Recall that the response to the sinusoidal excitation at frequencies less than 500 Hz is
very low, as shown in Figure 5-21. The modulation enables the actuator to generate high power
signals at low frequencies, while the sinusoidal response is limited by the actuator dynamics.
This allows an actuator operating at or near its resonant frequency via a carrier signal at f to
generate significant disturbances at characteristic frequencies of the flow that are far from the
natural frequency of the device. This characteristic is attributed to the nonlinear nature of the
actuator system. Similar behavior is observed for BM and PM.

5.2.3.3 C. and electrical power calibration

Figure 5-21 showed that the actuator u., response varies significantly with actuation
frequency when subjected to sinusoidal excitation. This is typical for a ZNMF actuator. When
the performance of separation control is studied, the actuation frequency is always of prime
importance. However, when the actuation frequency is varied, the actuator response is also
varied even for constant amplitude. As mentioned earlier, it has been shown that sinusoidal
authority varies monotonically with VJ[U_ up to some maximum value (Seifert et al. 1993,
1996, 1999; Glezer and Amitay 2002; Mittal and Rampunggoon 2002). In other words, when the
actuation frequency is varied, the two performance-determining parameters (namely frequency
and amplitude) are varied simultaneously. Unfortunately, this can lead to misleading results.
For example, one may find that the performance is the best at the peak response frequency of the
actuator, which could be simply because the actuator is providing higher output as opposed to the
flow being more receptive as that frequency.

The same problem above still exists even when multi-modal waveforms are used; the
actuator response varies when A, fm and f, are varied. To separate amplitude forcing effects,

the following calibration is performed. For the AM and BM signals, a two-dimensional grid in
the (fm,f,) space is generated, and C. and rms electrical power consumed by the actuator are

measured for various excitation amplitudes. This time-consuming task takes days to complete
and verify repeatability. The results are shown in Figure 5-24 and Figure 5-25. The profiles for
five amplitudes (30 VPP, 35 Vpp, 40 Vp,' 45 Vpp and 50 Vpp) are recorded and shown. The lowest
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profile is for the 30 Vpp case and the highest profile is for the 50 Vpp case. For the PM signal,
there is only one frequency parameter fm; thus a contour plot in the (A,fm) space is shown in

Figure 5-26. The amplitudes are again 30 Vpp to 50 Vpp with 5 VPP increment.
There are several important observations in the results. For the AM signal, the response

(C. and electrical power) is approximately independent of the modulation frequency f but

strongly dependent on fc. The C. at a fixed fm is similar to the sinusoidal velocity response

shown in Figure 5-21. In addition, the shape of the electrical power surfaces are somewhat
different than the shapes of the C., and the peak frequencies are different too. This means that

when the actuator provides the maximum velocity output, the electrical power consumption is
not maximized.

For the BM signal, the CA and electrical power responses are dependent on both f m and

fc. They monotonically increase with f,n as expected. As with the AM signal, the shapes of the
CP and electrical power surfaces are different and possess different peak frequencies. The

profiles are simpler for the PM signal since there is only one frequency parameter. Both the C.

and electrical power responses increase with fm and A as expected. Furthermore, typical levels

of C. are 104 , 10- ' and 106 for the AM, BM and PM signals, respectively.

With this information on CA and electrical power, additional constraint functionality is

added to the adaptive optimization program to hold CP or electrical power constant, while fm

and fc are varied. This is done by adjusting A in accordance with Figure 5-24, Figure 5-25 and
Figure 5-26 in each iteration of the optimization algorithm. Thus, it is possible that at certain
(fin ,fc) combinations, constant C. or electrical power cannot be achieved. In this case, f, and

f, are set to the values at the boundary such that the momentum or power constraint is
maintained. This will hopefully become clearer when the optimization results are discussed in
the next section.

5.2.4 Adaptive Control Results
First, the constrained optimization is carried out at AoA=12* and Re=120,000. At this

AoA, the dynamic control approach in our companion study works well. The constraint is set at
CP = 7.15 x 10-6 . This is a relatively low level, which can be achieved in most portions of the

(f,,m,f) space for the AM and BM signals and all values of fm for the PM signal. To protect the

actuator from physical damage, the maximum amplitude is limited to 50 Vpp. The results are
summarized in

Table 5-3. The lift-to-drag ratios are comparable with the results using the dynamic
control approach (within uncertainties). This is not surprising because the flow is completely
attached by both approaches at AoA=12*.

On the other hand, when the AoA is 20* where the dynamic control approach fails to
attach the flow, the present nonlinear control shows its clear performance improvement.
Therefore, a more detailed study is performed at this AoA.
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In addition to the constrained cases for C, = 7.15 x 10-6, the constrained optimization is

also carried out with constant electrical power of 0.0005 W. The constrained optimization
results are summarized in Table 5-4. Typical search paths are plotted in Figure 5-27 to Figure
5-29. The shaded areas in Figure 5-27 and Figure 5-28 denote the achievable parameter space,
inside which the optimization is constrained. It is clear that the achievable areas cover most of
the parameter space for the AM cases while limited space for the BM cases. Since there are two
parameters: fm and f., three initial points are needed in each optimization run as mentioned in

earlier sections. The symbols A, ., * denote the search paths following each initial point during
the optimization. On the other hand, for the PM signal, only two initial points are needed.
Different sets of initial points are chosen to cover most of the operational space to achieve a
global optimum.
In Table 5-4, the first column indicates if the constraint is active in the optimization process.

The last three columns summarize the optimal values for converged results. The
experimental uncertainties are also added to the L/D values. By simply observing
the LID values, we find that the performance for the AM case (a) gives the best
performance. The AM and BM signal are superior to the PM signal with constant C

= 7.15 x 10-6 . For the AM and BM cases (a), note that the converged fc is near the

shear layer frequency fSL" On the other hand, the modulation frequency fm assumes

a value near the wake frequency fw, and its superharmonics. Most importantly,

effective separation control is achieved by using the multimodal waveforms with C.
of at least an order-of-magnitude smaller than typical values reported in the literature
(Table 2 in Greenblatt and Wygnanski 2000). Selected sinusoidal excitations are also
tested on our airfoil model to compare with the results using the multimodal
waveforms. The voltage amplitude for these tests is held at 50 Vpp. The results are
summarized in

Table 5-5. It is clear that sinusoidal control (even with higher C,) gives poorer

performance than the AM and BM excitations.
In addition, except the PM signal, the nonlinear control is able to achieve much better

performance than the dynamic control in our companion study at AoA=20*. The nonlinear
control approach benefits from the nonlinear coupling of the instabilities and the integrated
performance (L/D) measurements instead of local unsteady pressure measurements.

Table 5-1. Case descriptions and performance for disturbance rejection experiments. (AoA= 12*
and Re= 120,000)

Case # Reference Performance CL CD L/D

transducer y transducer z
Baseline - 0.21 ± 0.02 0.21 ± 0.09 1.01 ± 0.08

1 SI SI 0.84±0.01 0.12 ± 0.01 6.97 ±0.37
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2 S6 S6 0.83 ±0.01 0.12 ±0.01 7.21 ± 0.46
3 S1 S6 0.84 ±0.01 0.12 ±0.01 7.11 ±0.40
4 S6 S1 0.84 ±0.01 0.12±0.01 7.09 ±0.43

Table 5-2. Summary of parameters in disturbance rejection algorithm.

P n V PC nc Pc

1 2 10 p+n+pt- 1 2 20

Table 5-3. Constrained optimization results using the AM, BM and PM signals. (Baseline
LAD=1.01 at AoA=12 ° and Re=120,000)

Signal type Constraint Constraint Converged Converged Converged

Active? f. fc L/D

AM CP = 7.15 x 10-6 No 74 1667 7.47 ± 0.45

BM CP = 7.15 x 10-6  Yes 48 1305 7.63 ± 0.36

PM CP =7.15x 10-6  No 16 NA 7.14 ±0.25

Table 5-4. Constrained optimization results using the AM, BM and PM signals. (Baseline
L/D= 1.1 at AoA=20* and Re= 120,000)

Signal type Constraint Constraint Converged Converged Converged

Active? fm fl L/D

AM: Case (a) CP = 7.15 x 10-6 Yes 61 2405 2.18 ± 0.07

AM : Case (b) Power=-0.0005 No 202 1005 1.77 ± 0.05

BM • Case (a) CP = 7.15 x 10.6 Yes 55 1979 1.95 ± 0.05

BM • Case (b) Power=0.0005 Yes 56 1318 1.52 ± 0.04

PM: Case (a) CO = 7.15 x 10-6 No 16 NA 1.49 ± 0.04
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PM :Case (b) Power--0.005 No 29 NA 1.48 ±0.04

Table 5-5. Results using sinusoidal excitations.

F*4 =fL,,PfU, CIL L/D

0.5 -0 1.14 ±0.02

15 3.16x 1041.76 ±0.03

26 7.79 x 10-6 1.77 ± 0.03

'Cui 15.24 cm
Synthetic jet NACA 0025

Actuation

(running ID) and control
algorithms in real tirm)

Figure 5-1. NACA 0025 airfoil model with actuators, sensors and closed-loop control system.
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Figure 5-2. Phase averaged pulse response measured by six pressure sensors. The slow
propagation velocity of the coherent flow structures is clearly visible.
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Figure 5-3. Comparison between measured signal from the pressure sensor (#6 in Figure 5-1)
and the fitted output by ARMARKOV system ID algorithm for long and short time
intervals. Results show a reasonable match at low frequencies between measured and fitted
outputs. For ARMARKOV ID: p=l, n=2, Error! Objects cannot be created from editing
field codes.= 10.
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Figure 5-4. Mean Squared Error (Running MSE) between measured and fitted outputs. Results
show that the ARMARKOV ID algorithm converges, i.e. error being minimized.
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Figure 5-5. Comparison between frequency response (FR) and fitted response by ARMARKOV

ID algorithm. Parameters for FR: Error! Objects cannot be created from editing field
codes.=4096 Hz, NFFT=1024, 75% overlap and Hanning window. For ARMARKOV
system ID: p=l, n=2, Error! Objects cannot be created from editing field codes.= 10.
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Figure 5-6. Dual signal paths from the actuator to the pressure sensor (acoustic and
hydrodynamic). A digital filter is introduced to remove the acoustic component by turning
off the flow to isolate the acoustic path.
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Figure 5-7. Actual measured and predicted acoustic Figure 5-8. Actual measured and predicted acoustic
noise using a band-limited random signal to the noise using the same filter as in Figure 5-7 but
actuator. with one half of the input amplitude.
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Figure 5-9. Power spectra of the sensor signals (with wind tunnel running) before and after
applying acoustic filter.
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Figure 5-12. Contours of strearnwise velocity Error! Objects cannot be created from editing
field codes, for (a) baseline and (b) closed-loop control case #2 at AoA = 120 and
Rec= 120,000.
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Figure 5-13. Contours of vorticity for (a) baseline and (b) closed-loop control case #2 at AoA=
120 and Rec= 120,000.
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Figure 5-14. (a) Voltage and (b) electrical power spectra of the actuator Al input signal for the
closed-loop control case.
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Figure 5-15. Performance comparison at different Figure 5-16. Power spectra of the pressure transducer
AoA. output for the baseline and the closed-loop

control cases measured by S6 (performance) at
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Figure 5-17. NACA 0025 airfoil model with actuators, sensors and closed-loop control system.
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Figure 5-18. Flow structures in separated flow.
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Figure 5-19. Wake (I chord aft of TE) and shear layer (near separation) power spectral density
functions at peak rrns location.
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Figure 5-20. Auto-bicoherence of the same velocity signal analyzed in Figure 5-19 using the
same parameter settings. The auto-bicoherence is zero except where nonlinear phase
quadratic phase coupling occurs due to interactions between the shear layer and wake
instabilities.
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Figure 5-21. Frequency response of ZNMF actuator Al1.
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(a) amplitude modulation (AM) (b) burst modulation (BM) (c) pulse modulation (PM)
Figure 5-22. Various waveforms of unit amplitude A = I that can be used to excite multiple

instabilities or modes in a separated flow.
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Figure 5-23. Velocity response (a) and its power spectral density (b) subject to an AM excitation
for the ZNMF actuator Al. A=50 Vpp , f,.=50 Hz and f,=1180 Hz.

Measurements were made outside the region of reverse flow.
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Figure 5-24. C. (a) and electrical power (b) profile subject to AM excitation. Five actuation

amplitudes (30 VPP, 35 VPP, 40 VPP1, 45 VPP1 and 50 Vpp) are shown.
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Figure 5-25. CP, (a) and electrical power (b) profile subject to BM excitation. Five actuation

amplitudes (30 VPP, 35 VPP, 40 VPP, 45 VPP and 50 Vpp) are shown.
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Figure 5-26. C,, (a) and electrical power (b) profile subject to PM excitation. Five actuation

amplitudes (30 Vpp1 , 35 Vpp1 , 40 Vpp, 45 Vp and 50 Vpp) are shown.
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Figure 5-27. Constrained search using AM: Cases (a) and (b). The shaded area denotes the
constraint area and amplitude is adjusted at each step to satisfy the constraint criteria. AOA
=20 deg. and Re = 120,000.
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Figure 5-28. Constrained search using BM: Cases (a) and (b). The shaded area denotes the
constraint area and amplitude is adjusted at each step to satisfy the constraint criteria. AOA
= 20 deg. and Re = 120,000.
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Figure 5-29. Constrained search using PM: Cases (a) and (b). AOA = 20 deg. and Re =
120,000.
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6 Summary and Future Work

An adaptive system identification and feedback control algorithm is applied to the
separation control problem for a NACA 0025 airfoil at nominal angles of attack of 12' and 20'
and a chord Reynolds number of 120,000 with a tripped boundary layer, corresponding to control
of a massively leading-edge separated flow. In particular, a recursive ARMARKOV system ID
algorithm is used to model the flow dynamics and provide the information required to implement
the disturbance rejection algorithm in real time with no prior knowledge of the system dynamics.
Phase-locked PIV and fluctuating surface pressure measurements provided evidence of the link
between the separated flow vertical structures and the surface pressure fluctuations. The chosen
control objective was thus to suppress the airfoil surface pressure fluctuations. The disturbance
rejection algorithm was able to automatically generate control input to the ZNMF actuator,
emphasizing low (i.e., wake) and high (i.e., shear layer) characteristic frequencies of the
separated flow. The effect of the control is to enhance near-wall mixing and suppress the highly
unsteady flow structures. This adaptive control scheme is able to completely reattach the flow
using low (-12.7 mW) power to a single piezoelectric synthetic jet actuator. The closed-loop
control results show - 7 x improvements in the lift/drag ratio, with a corresponding increase in
lift and reduced drag and concomitant reductions in the fluctuating surface pressure spectra. The
present results are, to the best of our knowledge, the first experimental demonstration of an
adaptive dynamic feedback control of a separated flow. The results reveal the tremendous
potential of closed-loop flow control to real aircraft applications but also reveal key issues
worthy of further study.

First, in terms of positives, the adaptive closed-loop control scheme has several attractive
features. It is quite general, and no prior knowledge of the system dynamics is required. The
system identification and disturbance rejection algorithms are integrated, and the system
dynamics can be obtained with minimal a priori user knowledge. The controller is implemented
using DSP hardware and can be easily incorporated in hardware-in-the-loop applications. It can
be applied to not only flow separation control problems, but also, for example, cavity oscillation
control and turbulent boundary layer control.

Second, in terms of unresolved technical issues, there remain many concerning the actuator
and sensor dynamics. Clearly, better actuators with not just higher output but flatter dynamic
response over wider frequency range are desirable. While measuring unsteady surface pressure
is relatively straightforward, the potential acoustic contamination issue was highlighted. This
difficulty was mitigated with an acoustic digital filter here but at the cost of additional
computational complexity from an already limited DSP. This issue suggests the use of alternate
surface sensors, such as MEMS-based direct shear stress sensors for feedback instead of pressure
sensors. Or perhaps thermal sensors may be sufficient despite their sensitivity to more than just
shear stress. Ultimately, it is believed that the key limitation of the present scheme, as evidenced
by its failure at higher angles of attack, include the assumption of linearity in the system
identification and disturbance rejection algorithm. The second part explores nonlinear control
methods.

In the post-stall separated flow where the flow does not reattach, there are two
characteristic instabilities: the shear layer Kelvin-Helmholtz instability and wake instability. Our
experiments have the evidence for such instabilities. In addition, the second order spectral
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analysis has quantified the quadratic phase coupling between the two instabilities, which
indicates the separated flow is a complex multi-frequency system.

Three multi-modal waveforms (namely amplitude modulation, burst modulation and
pulse modulation) are used targeting excitation of the multi-frequency separated flow system. A
simplex optimization approach for controlling the separated flow has been developed to search
for the optimal actuation parameters of the three waveforms using the ZNMF devices. It is
typical for the C. response to vary when the waveform frequency parameters vary for the

ZNMF devices. This can potentially lead to misleading results about the optimal forcing
frequency. The actuator dynamics is taken into consideration in the optimization approach. To
offset the actuator dynamics implications, a special routine is devised to hold the C. at constant

during the optimization process utilizing the pre-calibrated actuator response profiles. This is
specifically done by varying the actuation voltages according to the response profiles to keep the
C. at constant levels.

The constrained optimization results seeking to maximize L/D are promising and reveal
the importance of forcing nonlinear interactions between the shear layer and wake instabilities.
Effective separation control is achieved by using oscillatory momentum coefficients o(10 -10 ),

which is more than an order-of-magnitude smaller than typical values reported in the literature
(see summary in Greenblatt and Wygnanski 2000). Specifically, the optimized carrier frequency
f, targets the shear layer frequency while the optimized modulation frequency fm targets the
wake frequency and its super-harmonics. The nonlinear control is able to achieve similar
performance at AoA=12* and much better performance than the dynamic control in our
companion study at AoA=20*. The nonlinear control approach benefits from the nonlinear
coupling of the flow instabilities and the integrated performance (L/D) measurements instead of
local unsteady pressure measurements.
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